Publications by authors named "Anton F van der Steen"

Background: Wall shear stress (WSS) is involved in the pathophysiology of atherosclerosis. The correlation between WSS and atherosclerosis can be investigated over time using a WSS-manipulated atherosclerotic mouse model. To determine WSS in vivo, detailed 3D geometry of the vessel network is required.

View Article and Find Full Text PDF

Background And Purpose: Intraplaque hemorrhage (IPH), visualized by magnetic resonance imaging, has shown to be associated with the risk of stroke in patients with carotid artery stenosis. The mechanisms of IPH development are poorly understood. In this study, we investigated the association between clinical patient characteristics and carotid IPH on high-resolution magnetic resonance imaging.

View Article and Find Full Text PDF

Measuring the magnitude and direction of tissue displacement provides the basis for the assessment of tissue motion or tissue stiffness. Using conventional displacement tracking by ultrasound delay estimation, only one direction of tissue displacement can be estimated reliably. In this paper, we describe a new technique for estimating the complete two-dimensional displacement vector using high-frame-rate ultrasound imaging.

View Article and Find Full Text PDF

Heart attacks are often caused by rupture of caps of atherosclerotic plaques in coronary arteries. Cap rupture occurs when cap stress exceeds cap strength. We investigated the effects of plaque morphology and material properties on cap stress.

View Article and Find Full Text PDF

Background: The benefits of a decreased slice thickness and/or in-plane voxel size in carotid MRI for atherosclerotic plaque component quantification accuracy and biomechanical peak cap stress analysis have not yet been investigated in detail because of practical limitations.

Methods: In order to provide a methodology that allows such an investigation in detail, numerical simulations of a T1-weighted, contrast-enhanced, 2D MRI sequence were employed. Both the slice thickness (2 mm, 1 mm, and 0.

View Article and Find Full Text PDF

Background And Purpose: Carotid plaque composition is a major determinant of cerebrovascular events. In the present analysis, we evaluated the relationship between intraplaque hemorrhage (IPH) and a thin/ruptured fibrous cap (TRFC) in moderately stenosed carotid arteries and cerebral infarcts on MRI in the ipsilateral hemisphere.

Methods: A total of 101 patients with a symptomatic 30% to 69% carotid artery stenosis underwent MRI of the carotid arteries and the brain, within a median time of 45 days from onset of symptoms.

View Article and Find Full Text PDF

Background And Purpose: In patients with mild to moderate symptomatic carotid artery stenosis, intraplaque hemorrhage (IPH) and a thin/ruptured fibrous cap (FC) as evaluated with MRI, and the presence of microembolic signals (MESs) as detected with transcranial Doppler, are associated with an increased risk of a (recurrent) stroke. The objective of the present study is to determine whether the prevalence of MES differs in patients with and without IPH and thin/ruptured FC, and patients with only a thin/ruptured FC without IPH.

Methods: In this multicenter, diagnostic cohort study, patients with recent transient ischemic attack or minor stroke in the carotid territory and an ipsilateral mild to moderate carotid artery plaque were included.

View Article and Find Full Text PDF

Carotid magnetic resonance imaging (MRI) is used to noninvasively assess atherosclerotic plaque fibrous cap (FC) status, which is closely related to ischemic stroke. Acquiring anisotropic voxels improves in-plane visualization, however, an oblique scan plane orientation could then obscure a FC (i.e.

View Article and Find Full Text PDF

Atherosclerotic disease progression in coronary arteries is influenced by wall shear stress. To compute patient-specific wall shear stress, computational fluid dynamics (CFD) is required. In this study we propose a method for computing the pressure-drop in regions proximal and distal to a plaque, which can serve as a boundary condition in CFD.

View Article and Find Full Text PDF

The carotid artery (CA) is central to cardiovascular research, because of the clinical relevance of CA plaques as culprits of stroke and the accessibility of the CA for cardiovascular screening. The viscoelastic state of this artery, essential for clinical evaluation, can be assessed by observing arterial deformation in response to the pressure changes throughout the cardiac cycle. Ultrasound imaging has proven to be an excellent tool to monitor these dynamic deformation processes.

View Article and Find Full Text PDF

Biomechanical finite element analysis (FEA) based on in vivo carotid magnetic resonance imaging (MRI) can be used to assess carotid plaque vulnerability noninvasively by computing peak cap stress. However, the accuracy of MRI plaque segmentation and the influence this has on FEA has remained unreported due to the lack of a reliable submillimeter ground truth. In this study, we quantify this influence using novel numerical simulations of carotid MRI.

View Article and Find Full Text PDF

Background: Heterogeneity in plaque composition in human coronary artery bifurcations is associated with blood flow induced shear stress. Shear stress is generally determined by combing 3D lumen data and computational fluid dynamics (CFD). We investigated two new procedures to generate 3D lumen reconstructions of coronary artery bifurcations for shear stress computations.

View Article and Find Full Text PDF

Purpose: Atherosclerotic carotid plaques can be quantified in vivo by MRI. However, the accuracy in segmentation and quantification of components such as the thin fibrous cap (FC) and lipid-rich necrotic core (LRNC) remains unknown due to the lack of a submillimeter scale ground truth.

Methods: A novel approach was taken by numerically simulating in vivo carotid MRI providing a ground truth comparison.

View Article and Find Full Text PDF

Transesophageal echocardiography (TEE) uses the esophagus as an imaging window to the heart. This enables cardiac imaging without interference from the ribs or lungs and allows for higher frequency ultrasound to be used compared with transthoracic echocardiography (TTE). TEE facilitates the successful imaging of obese or elderly patients, where TTE may be unable to produce images of satisfactory quality.

View Article and Find Full Text PDF

Cardiovascular disease is a leading cause of death in the Western world. Therefore, detection and quantification of atherosclerotic disease is of paramount importance to monitor treatment and possible prevention of acute events. Vascular ultrasound is an excellent technique to assess the geometry of vessel walls and plaques.

View Article and Find Full Text PDF

Maternal hyperhomocysteinemia has been associated with an increased risk of newborns with a congenital heart defect. This has been substantiated in the chicken embryo, as congenital heart defects have been induced after homocysteine treatment. Comparable heart defects are observed in venous clipping studies, a model of altered embryonic blood flow.

View Article and Find Full Text PDF

In medical ultrasound, fundamental imaging (FI) uses the reflected echoes from the same spectral band as that of the emitted pulse. The transmission frequency determines the trade-off between penetration depth and spatial resolution. Tissue harmonic imaging (THI) employs the second harmonic of the emitted frequency band to construct images.

View Article and Find Full Text PDF

Tissue second-harmonic imaging is currently the default mode in commercial diagnostic ultrasound systems. A new modality, superharmonic imaging (SHI), combines the third through fifth harmonics originating from nonlinear wave propagation through tissue. SHI could further improve the resolution and quality of echographic images.

View Article and Find Full Text PDF

Aims: Atherosclerotic plaques develop in low shear stress regions. In the more advanced phase of the disease, plaques are exposed to altered shear stress levels, which could influence plaque composition. We investigated changes in plaque composition in human coronary arteries over a 6-month period and how these changes are related to shear stress.

View Article and Find Full Text PDF

Background: Rupture of the cap of a vulnerable plaque present in a coronary vessel may cause myocardial infarction and death. Cap rupture occurs when the peak cap stress exceeds the cap strength. The mechanical stress within a cap depends on the plaque morphology and the material characteristics of the plaque components.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) is rapidly becoming the method of choice for assessing arterial wall pathology in vivo. Atherosclerotic plaques can be diagnosed with high accuracy, including measurement of the thickness of fibrous caps, enabling an assessment of the risk of rupture. While the OCT image presents morphological information in highly resolved detail, it relies on interpretation of the images by trained readers for the identification of vessel wall components and tissue type.

View Article and Find Full Text PDF

Acoustic radiation force (ARF) has become a common excitation mechanism in elasticity imaging. The high acoustic intensities and subsequent generation of harmonics, however, hamper the effectiveness of using conventional radiofrequency (rf) tracking to investigate the dynamics of tissues and catheter-based transducers, especially during the excitation. Optical tracking, on the other hand, does not utilize acoustic echo and thus is not affected by ARF-generated interference.

View Article and Find Full Text PDF

Atherosclerosis is currently appreciated as a disease with a large inflammatory component. The underlying mechanisms, which are uncovered in a rapid pace, are greatly interconnected and as such very complex. Nevertheless, for clinicians it is important have some degree of insight in these immunologic mechanisms in order to interpret the current research advances.

View Article and Find Full Text PDF