Quantum computing offers new heuristics for combinatorial problems. With small- and intermediate-scale quantum devices becoming available, it is possible to implement and test these heuristics on small-size problems. A candidate for such combinatorial problems is the heterogeneous vehicle routing problem (HVRP): the problem of finding the optimal set of routes, given a heterogeneous fleet of vehicles with varying loading capacities, to deliver goods to a given set of customers.
View Article and Find Full Text PDFWe perform quantum process tomography (QPT) for both discrete- and continuous-variable quantum systems by learning a process representation using Kraus operators. The Kraus form ensures that the reconstructed process is completely positive. To make the process trace preserving, we use a constrained gradient-descent (GD) approach on the so-called Stiefel manifold during optimization to obtain the Kraus operators.
View Article and Find Full Text PDFGiant atoms that interact with real-space waveguides at multiple spatial points have attracted extensive attention due to their unique interference effects. Here we propose a feasible scheme for constructing giant atoms in a synthetic frequency dimension with, e.g.
View Article and Find Full Text PDFQuantum state tomography (QST) is a challenging task in intermediate-scale quantum devices. Here, we apply conditional generative adversarial networks (CGANs) to QST. In the CGAN framework, two dueling neural networks, a generator and a discriminator, learn multimodal models from data.
View Article and Find Full Text PDFWe propose tunable chiral bound states in a system composed of superconducting giant atoms and a Josephson photonic-crystal waveguide (PCW), with no analog in other quantum setups. The chiral bound states arise due to interference in the nonlocal coupling of a giant atom to multiple points of the waveguide. The chirality can be tuned by changing either the atom-waveguide coupling or the external bias of the PCW.
View Article and Find Full Text PDFTwo close parallel mirrors attract due to a small force (Casimir effect) originating from the quantum vacuum fluctuations of the electromagnetic field. These vacuum fluctuations can also induce motional forces exerted upon one mirror when the other one moves. Here, we consider an optomechanical system consisting of two vibrating mirrors constituting an optical resonator.
View Article and Find Full Text PDFCavity-QED systems have recently reached a regime where the light-matter interaction strength amounts to a non-negligible fraction of the resonance frequencies of the bare subsystems. In this regime, it is known that the usual normal-order correlation functions for the cavity-photon operators fail to describe both the rate and the statistics of emitted photons. Following Glauber's original approach, we derive a simple and general quantum theory of photodetection, valid for arbitrary light-matter interaction strengths.
View Article and Find Full Text PDFIn quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide.
View Article and Find Full Text PDFThe experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics.
View Article and Find Full Text PDFWe propose a new method for frequency conversion of photons which is both versatile and deterministic. We show that a system with two resonators ultrastrongly coupled to a single qubit can be used to realise both single- and multiphoton frequency-conversion processes. The conversion can be exquisitely controlled by tuning the qubit frequency to bring the desired frequency-conversion transitions on or off resonance.
View Article and Find Full Text PDFQuantum information can be stored in micromechanical resonators, encoded as quanta of vibration known as phonons. The vibrational motion is then restricted to the stationary eigenmodes of the resonator, which thus serves as local storage for phonons. In contrast, we couple propagating phonons to an artificial atom in the quantum regime and reproduce findings from quantum optics, with sound taking over the role of light.
View Article and Find Full Text PDFThe ability to nondestructively detect the presence of a single, traveling photon has been a long-standing goal in optics, with applications in quantum information and measurement. Realizing such a detector is complicated by the fact that photon-photon interactions are typically very weak. At microwave frequencies, very strong effective photon-photon interactions in a waveguide have recently been demonstrated.
View Article and Find Full Text PDFWe investigate the effective interaction between two microwave fields, mediated by a transmon-type superconducting artificial atom which is strongly coupled to a coplanar transmission line. The interaction between the fields and atom produces an effective cross-Kerr coupling. We demonstrate average cross-Kerr phase shifts of up to 20 degrees per photon with both coherent microwave fields at the single-photon level.
View Article and Find Full Text PDFWe show, in the context of single-photon detection, that an atomic three-level model for a transmon in a transmission line does not support the predictions of the nonlinear polarizability model known as the cross-Kerr effect. We show that the induced displacement of a probe in the presence or absence of a single photon in the signal field, cannot be resolved above the quantum noise in the probe. This strongly suggests that cross-Kerr media are not suitable for photon counting or related single-photon applications.
View Article and Find Full Text PDF