Publications by authors named "Anton D Chavez"

Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets.

View Article and Find Full Text PDF

Macrocycles that assemble into nanotubes exhibit emergent properties stemming from their low dimensionality, structural regularity, and distinct interior environments. We report a versatile strategy to synthesize diverse nanotube structures in a single, efficient reaction by using a conserved building block bearing a pyridine ring. Imine condensation of a 2,4,6-triphenylpyridine-based diamine with various aromatic dialdehydes yields chemically distinct pentagonal [5 + 5], hexagonal [3 + 3], and diamond-shaped [2 + 2] macrocycles depending on the substitution pattern of the aromatic dialdehyde monomer.

View Article and Find Full Text PDF

Nanotubes assembled from macrocyclic precursors offer a unique combination of low dimensionality, structural rigidity, and distinct interior and exterior microenvironments. Usually the weak stacking energies of macrocycles limit the length and mechanical strength of the resultant nanotubes. Imine-linked macrocycles were recently found to assemble into high-aspect ratio (>10 ), lyotropic nanotubes in the presence of excess acid.

View Article and Find Full Text PDF

β-Ketoenamine-linked covalent organic frameworks (COFs) offer excellent structural versatility and outstanding aqueous stability, but their stability complicates obtaining samples with high crystallinity and surface areas. In contrast, imine-linked COFs are often isolated with superior materials quality. Here we synthesize several β-ketoenamine-linked COFs, including two unreported structures, with unmatched crystallinity and high surface areas by preparing the corresponding imine-linked COF and exchanging its triformylbenzene monomers with triformylphloroglucinol.

View Article and Find Full Text PDF

One-dimensional nanostructures such as carbon nanotubes and actin filaments rely on strong and directional interactions to stabilize their high aspect ratio shapes. This requirement has precluded making isolated, long, thin organic nanotubes by stacking molecular macrocycles, as their noncovalent stacking interactions are generally too weak. Here we report high aspect ratio (>10), lyotropic nanotubes of stacked, macrocyclic, iminium salts, which are formed by protonation of the corresponding imine-linked macrocycles.

View Article and Find Full Text PDF

Macrocycles based on directional bonding and dynamic covalent bond exchange can be designed with specific pore shapes, sizes, and functionality. These systems retain many of the design criteria and desirable aspects of two-dimensional (2D) covalent organic frameworks (COFs) but are more easily processed. Here we access discrete hexagonal imine-linked macrocycles by condensing a truncated analogue of 1,3,5-tris(4-aminophenyl)benzene (TAPB) with terephthaldehyde (PDA).

View Article and Find Full Text PDF

We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMA) and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) onto a Au(111) surface in ultrahigh vacuum followed by annealing to facilitate Schiff-base condensations between monomers. Scanning tunneling spectroscopy (STS) experiments conducted on isolated TAPP precursor molecules and the covalently linked COF networks yield similar transport (HOMO-LUMO) gaps of 1.

View Article and Find Full Text PDF

The preparation of two-dimensional covalent organic frameworks (2D COFs) with large crystalline domains and controlled morphology is necessary for realizing the full potential of their atomically precise structures and uniform, tailorable porosity. Currently 2D COF syntheses are developed empirically, and most materials are isolated as insoluble and unprocessable powders with typical crystalline domain sizes smaller than 50 nm. Little is known about their nucleation and growth processes, which involve a combination of covalent bond formation, degenerate bond exchange, and noncovalent stacking processes.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are two- or three-dimensional (2D or 3D) polymer networks with designed topology and chemical functionality, permanent porosity, and high surface areas. These features are potentially useful for a broad range of applications, including catalysis, optoelectronics, and energy storage devices. But current COF syntheses offer poor control over the material's morphology and final form, generally providing insoluble and unprocessable microcrystalline powder aggregates.

View Article and Find Full Text PDF

We examine the growth rates, activation energies, and hydrolytic stability of multiple 2D boronate ester covalent organic frameworks by turbidity measurements, observing a 200-fold range in stability. The rate-determining step in boronate ester 2D COF growth is not in-solution condensation, but rather interlayer polymer stacking through a nucleation-elongation process.

View Article and Find Full Text PDF