Wearable nanocomposite stretch sensors are an exciting new development in biomaterials for biomechanical motion-tracking technology, with applications in the treatment of low back pain, knee rehabilitation, fetal movement tracking, and other fields. When strained, the resistance of the low-cost sensors is reduced, enabling human motion to be monitored using a suitable sensor array. However, current sensor technologies have exhibited significant drift, in the form of increased electrical resistance, if left stored in typical room conditions.
View Article and Find Full Text PDFStaphylococcus aureus forms biofilms that cause considerable morbidity and mortality in patients who receive implanted devices such as prosthetics or fixator pins. An ideal surface for such medical devices would inhibit biofilm growth. Recently, it was reported that surface modification of stainless steel materials with carbon-infiltrated carbon nanotubes (CICNT) inhibits the growth of S.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2023
Polymeric foams, embedded with nano-scale conductive particles, have previously been shown to display quasi-piezoelectric (QPE) properties; i.e., they produce a voltage in response to rapid deformation.
View Article and Find Full Text PDFChronic low back pain (cLBP) is a prevalent and multifactorial ailment. No single treatment has been shown to dramatically improve outcomes for all cLBP patients, and current techniques of linking a patient with their most effective treatment lack validation. It has long been recognized that spinal pathology alters motion.
View Article and Find Full Text PDFObjective: One aim of the Back Pain Consortium (BACPAC) Research Program is to develop an integrated model of chronic low back pain that is informed by combined data from translational research and clinical trials. We describe efforts to maximize data harmonization and accessibility to facilitate Consortium-wide analyses.
Methods: Consortium-wide working groups established harmonized data elements to be collected in all studies and developed standards for tabular and nontabular data (eg, imaging and omics).
In 2019, the National Health Interview survey found that nearly 59% of adults reported pain some, most, or every day in the past 3 months, with 39% reporting back pain, making back pain the most prevalent source of pain, and a significant issue among adults. Often, identifying a direct, treatable cause for back pain is challenging, especially as it is often attributed to complex, multifaceted issues involving biological, psychological, and social components. Due to the difficulty in treating the true cause of chronic low back pain (cLBP), an over-reliance on opioid pain medications among cLBP patients has developed, which is associated with increased prevalence of opioid use disorder and increased risk of death.
View Article and Find Full Text PDFBackground: Chronic low back pain (cLBP) is a complex with a heterogenous clinical presentation. A better understanding of the factors that contribute to cLBP is needed for accurate diagnosis, optimal treatment, and identification of mechanistic targets for new therapies. The Back Pain Consortium (BACPAC) Research Program provides a unique opportunity in this regard, as it will generate large clinical datasets, including a diverse set of harmonized measurements.
View Article and Find Full Text PDFObjective: Biomechanics represents the common final output through which all biopsychosocial constructs of back pain must pass, making it a rich target for phenotyping. To exploit this feature, several sites within the NIH Back Pain Consortium (BACPAC) have developed biomechanics measurement and phenotyping tools. The overall aims of this article were to: 1) provide a narrative review of biomechanics as a phenotyping tool; 2) describe the diverse array of tools and outcome measures that exist within BACPAC; and 3) highlight how leveraging these technologies with the other data collected within BACPAC could elucidate the relationship between biomechanics and other metrics used to characterize low back pain (LBP).
View Article and Find Full Text PDFHigh-deflection strain gauges show potential as economical and user-friendly sensors for capturing large deformations. The interpretation of these sensors is much more complex than that of conventional strain gauges due to the viscoelastic nature of strain gauges. This research endeavor developed and tested a model for interpreting sensor outputs that includes the time-dependent nature of strain gauges.
View Article and Find Full Text PDFA morphological study of the micro-scale defects induced by growing a carbon-infiltrated carbon nanotube (CICNT) forest on concave substrates was conducted. Two CICNT heights (roughly 60 μm and 400 μm) and 4 curvatures (1-4 mm ID) were studied in order to test the geometric limitations. Defects were categorized and quantified by scanning electron microscopy (SEM) of the tops and cross-sections.
View Article and Find Full Text PDFIn this work, a knee sleeve is presented for application in physical therapy applications relating to knee rehabilitation. The device is instrumented with sixteen piezoresistive sensors to measure knee angles during exercise, and can support at-home rehabilitation methods. The development of the device is presented.
View Article and Find Full Text PDFPeriprosthetic joint infection (PJI) is a devastating complication of orthopedic implant surgeries, such as total knee and hip arthroplasties. Treatment requires additional surgeries because antibiotics have limited efficacy due to biofilm formation and resistant bacterial strains such as methicillin-resistant Staphylococcus aureus (MRSA). A non-pharmaceutical approach is needed, and examples of this are found in nature; dragonfly and cicada wings are antibacterial because of their nanopillar surface structure rather than their chemistry.
View Article and Find Full Text PDFRunning is a common exercise with numerous health benefits. Vertical ground reaction force (vGRF) influences running injury risk and running performance. Measurement of vGRF during running is now primarily constrained to a laboratory setting.
View Article and Find Full Text PDFIn studies of gait, continuous measurement of force exerted by the ground on a body, or ground reaction force (GRF), provides valuable insights into biomechanics, locomotion, and the possible presence of pathology. However, gold-standard measurement of GRF requires a costly in-lab observation obtained with sophisticated equipment and computer systems. Recently, in-shoe sensors have been pursued as a relatively inexpensive alternative to in-lab measurement.
View Article and Find Full Text PDFSitting posture is the position in which one holds his/her body upright against gravity while sitting. Poor sitting posture is regarded as an aggravating factor for various diseases. In this paper, we present an inverse piezoresistive nanocomposite sensor, and related deciphering neural network, as a new tool to identify human sitting postures accurately.
View Article and Find Full Text PDFJ Orthop Translat
October 2017
Objective: To investigate the biomechanical effects of injections of a protease on the characteristics of bovine coccygeal and human lumbar disc motion segments.
Methods: Mechanics of treated tissues were measured immediately after injection and 3 h after injection. Motion segments underwent axial rotation and flexion-extension loading.
Physical activity impacts health and disease in multiple body tissues including the intervertebral discs. Fluid flow within the disc is an indicator of disc health that can be observed using diffusion weighted magnetic resonance imaging. We monitored activity levels of 26 participants, age 35-55 yrs, using Actigraph accelerometers for 4 days to evaluate vigorous-intensity activity, moderate to vigorous intensity activity, and sedentary time.
View Article and Find Full Text PDFAmerican football has both the highest rate of concussion incidences as well as the highest number of concussions of all contact sports due to both the number of athletes and nature of the sport. Recent research has linked concussions with long term health complications such as chronic traumatic encephalopathy and early onset Alzheimer's. Understanding the mechanical characteristics of concussive impacts is critical to help protect athletes from these debilitating diseases and is now possible using helmet-based sensor systems.
View Article and Find Full Text PDFThis paper describes a method for the estimation of the 3D ground reaction force (GRF) during human walking using novel nanocomposite piezo-responsive foam (NCPF) sensors. Nine subjects (5 male, 4 female) walked on a force-instrumented treadmill at 1.34 m/s for 120 s each while wearing a shoe that was instrumented with four NCPF sensors.
View Article and Find Full Text PDFContext: Foot and ankle injuries are common and often require a nonweight-bearing period of immobilization for the involved leg. This nonweight-bearing period usually results in muscle atrophy for the involved leg. There is a dearth of objective data describing muscle activation for different ambulatory aids that are used during the aforementioned nonweight-bearing period.
View Article and Find Full Text PDFIntervertebral disk (IVD) degeneration is a prevalent health problem that is highly linked to back pain. To understand the disease and tissue response to therapies, ex vivo whole IVD organ culture systems have recently been introduced. The goal of this work was to develop and validate the design of a whole spinal segment culturing system that loads the disk in complex loading similar to the in vivo condition, while preserving the adjacent endplates and vertebral bodies.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
November 2016
Data has been published that quantifies the nonlinear, anisotropic material behaviour and pre-strain behaviour of the anterior longitudinal, supraspinous (SSL), and interspinous ligaments of the human lumbar spine. Additionally, data has been published on localized material properties of the SSL. These results have been incrementally incorporated into a previously validated finite element model of the human lumbar spine.
View Article and Find Full Text PDF