Publications by authors named "Anton Borger"

Peripheral nerve regeneration depends on close interaction between neurons and Schwann cells (SCs). After nerve injury, SCs produce growth factors and cytokines that are crucial for axon re-growth. Previous studies revealed the supernatant of SCs exposed to nuclear magnetic resonance therapy (NMRT) treatment to increase survival and neurite formation of rat dorsal root ganglion (DRG) neurons in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • * Initial treatments, including a split-thickness skin graft, failed due to poor healing linked to compromised blood supply, and imaging tests revealed further complications like screw fractures and nonunion of the fracture.
  • * Ultimately, the patient underwent revision surgery that involved a bridge flap procedure to reconstruct the soft tissue defect, allowing for successful coverage of the wound after a year of treatment.
View Article and Find Full Text PDF

Here, we report about a patient with a full-thickness burn injury of the left lower extremity with approximately 8% of total BSA affected. Initial therapy consisted of necrosectomy and wound coverage with split-thickness graft. The patient developed a wound infection with Pseudomonas aeruginosa, resulting in the failure of the skin graft to achieve complete healing.

View Article and Find Full Text PDF

Depending on their extent, burn injuries require different treatment strategies. In cases of severe large-area trauma, the availability of vital skin for autografting is limited. Donor skin allografts are a well-established but rarely standardized option for temporary wound coverage.

View Article and Find Full Text PDF

Hydrogels have shown potential in replacing damaged nerve tissue, but the ideal hydrogel is yet to be found. In this study, various commercially available hydrogels were compared. Schwann cells, fibroblasts, and dorsal root ganglia neurons were seeded on the hydrogels, and their morphology, viability, proliferation, and migration were examined.

View Article and Find Full Text PDF

A growing body of studies indicate that small noncoding RNAs, especially microRNAs (miRNA), play a crucial role in response to peripheral nerve injuries. During Wallerian degeneration and regeneration processes, they orchestrate several pathways, in particular the MAPK, AKT, and EGR2 (KROX20) pathways. Certain miRNAs show specific expression profiles upon a nerve lesion correlating with the subsequent nerve regeneration stages such as dedifferentiation and with migration of Schwann cells, uptake of debris, neurite outgrowth and finally remyelination of regenerated axons.

View Article and Find Full Text PDF

Regardless of the nerve defect length, nerve injury is a debilitating condition for the affected patient that results in loss of sensory and motor function. These functional impairments can have a profound impact on the patient's quality of life. Surgical approaches for the treatment of short segment nerve defects are well-established.

View Article and Find Full Text PDF