Philos Trans A Math Phys Eng Sci
August 2018
This paper reviews confinement-driven phase transitions in superconductors and Bardeen-Cooper-Schrieffer superfluids, and the appearance in thin films of new phases that break the time-reversal or translational symmetry. The origins of the new phases are closely tied to the Andreev scattering processes involving particle-hole conversions that create surface quasiparticle states with energies inside the superconducting gap. Restructuring of the low-energy spectrum in the surface region of several coherence lengths results in large spatial variations of the superconducting order parameter.
View Article and Find Full Text PDFWe present a numerical study of the field-angle resolved oscillations of the thermal conductivity and specific heat under a rotated magnetic field in the A(y)Fe(2-x)Se(2) [A = K, Rb, Cs, (Tl, K)] superconductors, using realistic two-band Fermi surface parametrization. Our key finding is that even for isotropic pairing on an anisotropic Fermi surface, the thermodynamic quantities exhibit substantial oscillatory behavior in the superconducting state, even much below the upper critical field. Furthermore, in multiband systems the competition of anisotropies between two Fermi surfaces can cause a double sign reversal of oscillations as a function of temperature, irrespective of gap anisotropy.
View Article and Find Full Text PDF