A series of novel highly active androgen receptor (AR) antagonists containing spiro-4-(5-oxo-3-phenyl-2-thioxoimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile core was designed based on the SAR studies available from the reported AR antagonists and in silico modeling. Within the series, compound (R)-6 (ONC1-13B) and its related analogues, including its active N-dealkylated metabolite, were found to be the most potent molecules with the target activity (IC50, androgen-sensitive human PCa LNCaP cells) in the range of 59-80 nM (inhibition of PSA production). The disclosed hits were at least two times more active than bicalutamide, nilutamide and enzalutamide within the performed assay.
View Article and Find Full Text PDFRecently new drugs targeting androgen-dependent axis have been approved for the treatment of castration-resistant prostate cancer (CRPC) - Zytiga and Xtandi (formerly MDV3100), several other candidates (for example, ARN-509) are in early phases of clinical trials. However despite significant improvement in overall survival with new treatments it is evident that resistance to these drugs develops. One of the approaches to overcome it is combination therapy and from this point of view some potential for drug-drug interactions can limit the application of the drug.
View Article and Find Full Text PDFBioorg Med Chem Lett
July 2012
Synthesis and biological evaluation of a new series of structurally unrestricted and intramolecular hydrogen bond restricted derivatives of 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[3,4-e]pyrimidines (angular tricyclics) and 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[4,3-d]pyrimidines (linear tricyclics) are described. Structurally restricted derivatives are highly potent and selective blockers of 5-HT(6) receptors with little difference between angular or linear shape of the tricyclic core, the angular species being only slightly more potent. The angular representative of 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[3,4-e]pyrimidines, 5, can be considered as more favorable candidate for further development as it shows only weak 5-HT(2B) blocking activity (IC(50)=6.
View Article and Find Full Text PDF5-HT(6) receptors are exclusively localized in the CNS and have high affinity with many psychotropic agents. Though the role of this receptor in many CNS diseases is widely anticipated, lack of definite progress in the development of 5-HT(6) receptor-oriented drugs indicates a need for further discoveries of novel chemotypes with high potency and high selectivity to the receptor. Here we present preparations and biological evaluation of a series of (3-phenylsulfonylcycloalkano[e and d]pyrazolo[1,5-a]pyrimidin-2-yl)amines.
View Article and Find Full Text PDF