While calcium imaging has become a mainstay of modern neuroscience, the spectral properties of current fluorescent calcium indicators limit deep-tissue imaging as well as simultaneous use with other probes. Using two monomeric near-infrared (NIR) fluorescent proteins (FPs), we engineered an NIR Förster resonance energy transfer (FRET)-based genetically encoded calcium indicator (iGECI). iGECI exhibits high levels of brightness and photostability and an increase up to 600% in the fluorescence response to calcium.
View Article and Find Full Text PDFBright monomeric near-infrared (NIR) fluorescent proteins (FPs) are in high demand as protein tags for multicolor microscopy and in vivo imaging. Here we apply rational design to engineer a complete set of monomeric NIR FPs, which are the brightest genetically encoded NIR probes. We demonstrate that the enhanced miRFP series of NIR FPs, which combine high effective brightness in mammalian cells and monomeric state, perform well in both nanometer-scale imaging with diffraction unlimited stimulated emission depletion (STED) microscopy and centimeter-scale imaging in mice.
View Article and Find Full Text PDFFocusing light deep by engineering wavefronts toward guide stars inside scattering media has potential biomedical applications in imaging, manipulation, stimulation, and therapy. However, the lack of endogenous guide stars in biological tissue hinders its translations to in vivo applications. Here, we use a reversibly switchable bacterial phytochrome protein as a genetically encoded photochromic guide star (GePGS) in living tissue to tag photons at targeted locations, achieving light focusing inside the tissue by wavefront shaping.
View Article and Find Full Text PDFOptical control over the activity of receptor tyrosine kinases (RTKs) provides an efficient way to reversibly and non-invasively map their functions. We combined catalytic domains of Trk (tropomyosin receptor kinase) family of RTKs, naturally activated by neurotrophins, with photosensory core module of DrBphP bacterial phytochrome to develop opto-kinases, termed Dr-TrkA and Dr-TrkB, reversibly switchable on and off with near-infrared and far-red light. We validated Dr-Trk ability to reversibly light-control several RTK pathways, calcium level, and demonstrated that their activation triggers canonical Trk signaling.
View Article and Find Full Text PDFFrom a single domain of cyanobacteriochrome (CBCR) we developed a near-infrared (NIR) fluorescent protein (FP), termed miRFP670nano, with excitation at 645 nm and emission at 670 nm. This is the first CBCR-derived NIR FP evolved to efficiently bind endogenous biliverdin chromophore and brightly fluoresce in mammalian cells. miRFP670nano is a monomer with molecular weight of 17 kDa that is 2-fold smaller than bacterial phytochrome (BphP)-based NIR FPs and 1.
View Article and Find Full Text PDFPhotoacoustic (PA) computed tomography (PACT) benefits from genetically encoded probes with photochromic behavior, which dramatically increase detection sensitivity and specificity through photoswitching and differential imaging. Starting with a DrBphP bacterial phytochrome, we have engineered a near-infrared photochromic probe, DrBphP-PCM, which is superior to the full-length RpBphP1 phytochrome previously used in differential PACT. DrBphP-PCM has a smaller size, better folding, and higher photoswitching contrast.
View Article and Find Full Text PDFNumerous near-infrared (NIR) fluorescent proteins (FPs) were recently engineered from bacterial photoreceptors but lack of their systematic comparison makes researcher's choice rather difficult. Here we evaluated side-by-side several modern NIR FPs, such as blue-shifted smURFP and miRFP670, and red-shifted mIFP and miRFP703. We found that among all NIR FPs, miRFP670 had the highest fluorescence intensity in various mammalian cells.
View Article and Find Full Text PDFWe have developed a microfluidic flow cytometry system to screen reversibly photoswitchable fluorescent proteins for contrast and stability of reversible photoconversion between high- and low-fluorescent states. A two-color array of 20 excitation and deactivation beams generated with diffractive optics was combined with a serpentine microfluidic channel geometry designed to provide five cycles of photoswitching with real-time calculation of photoconversion fluorescence contrast. The characteristics of photoswitching in-flow as a function of excitation and deactivation beam fluence, flow speed, and protein concentration were studied with droplets of the bacterial phytochrome from Deinococcus radiodurans (DrBphP), which is weakly fluorescent in the near-infrared (NIR) spectral range.
View Article and Find Full Text PDFLight-mediated control of protein-protein interactions to regulate cellular pathways is an important application of optogenetics. Here, we report an optogenetic system based on the reversible light-induced binding between the bacterial phytochrome BphP1 and its natural partner PpsR2 from Rhodopseudomonas palustris bacteria. We extensively characterized the BphP1-PpsR2 interaction both in vitro and in mammalian cells and then used this interaction to translocate target proteins to specific cellular compartments, such as the plasma membrane and the nucleus.
View Article and Find Full Text PDFPoorly differentiated and anaplastic thyroid carcinomas are very aggressive, almost invariably lethal neoplasms for which no effective treatment exists. These tumors are intrinsically resistant to cell death, even when their driver oncogenic signaling pathways are inhibited.We have undertaken a detailed analysis, in mouse and human thyroid cancer cells, of the mechanism through which Obatoclax, a pan-inhibitor of the anti-apoptotic proteins of the BCL2 family, effectively reduces tumor growth in vitro and in vivo.
View Article and Find Full Text PDFGenetically encoded optical tools have revolutionized modern biology by allowing detection and control of biological processes with exceptional spatiotemporal precision and sensitivity. Natural photoreceptors provide researchers with a vast source of molecular templates for engineering of fluorescent proteins, biosensors, and optogenetic tools. Here, we give a brief overview of natural photoreceptors and their mechanisms of action.
View Article and Find Full Text PDFThe interaction of proteins in living cells is one of the key processes in the maintenance of their homeostasis. Introduction of additional agents into the chain of these interactions may influence homeostatic processes. Recent advances in nanotechnologies have led to a wide use of nanoparticles (NPs) in industrial and biomedical applications.
View Article and Find Full Text PDFSmall heat shock proteins (sHsp) are ubiquitously expressed in all human tissues and have an important housekeeping role in preventing the accumulation of aggregates of improperly folded or denatured proteins. They also participate in the regulation of the cytoskeleton, proliferation, apoptosis and many other vital processes. Fluorescent chimeras composed of sHsp and enhanced fluorescent proteins have been used to determine the intracellular locations of small heat shock proteins and to analyse the hetero-oligomeric complexes formed by different sHsp.
View Article and Find Full Text PDFArch Biochem Biophys
September 2011
Interaction of human Bag3 with small heat shock proteins HspB6, HspB8 and its K141E mutant was analyzed by different biochemical methods. The data of size-exclusion chromatography indicate that the wild type HspB8 forms tight complexes with Bag3. K141E mutant of HspB8 and especially HspB6 weaker interact with Bag3.
View Article and Find Full Text PDFMol Cell Biochem
September 2011
A number of phosphomimicking mutants (replacement of Ser/Thr residues by Asp) of human small heat shock protein HspB8 were obtained and phosphorylation of the wild type HspB8 and its mutants by ERK1 kinase was analyzed in vitro. Mutation S159D does not affect phosphorylation, whereas mutations S24D and S27D equally moderately inhibited and mutation T87D strongly inhibited phosphorylation of HspB8. The double mutations S24D/T87D and S27D/T87D induced very strong inhibitory effect and the triple mutations S24D/S27D/T87D completely prevented phosphorylation catalyzed by ERK1.
View Article and Find Full Text PDFThe recently described human HSP22 belongs to the superfamily of small heat-shock proteins containing a conservative alpha-crystallin domain. HSP22 seems to be involved in regulation of cell proliferation, cardiac hypertrophy, apoptosis, and carcinogenesis, and expression of point mutants of HSP22 correlates with development of different neuromuscular diseases. Therefore, an investigation of the structure and properties of HSP22 is desirable for understanding its multiple functions.
View Article and Find Full Text PDF