Human-induced force analysis plays an important role across a wide range of disciplines, including biomechanics, sport engineering, health monitoring or structural engineering. Specifically, this paper focuses on the replication of ground reaction forces (GRF) generated by humans during movement. They can provide critical information about human-mechanics and be used to optimize athletic performance, prevent and rehabilitate injuries and assess structural vibrations in engineering applications.
View Article and Find Full Text PDFOne of the most popular options in the Structural Health Monitoring field is the tracking of the modal parameters, which are estimated through the frequency response functions of the structure, usually in the form of accelerances, which are computed as the ratio between the measured accelerations and the applied forces. This requires the use of devices capable of synchronously recording accelerations at several points of the structure at high sampling rates and the subsequent computational analysis using the recorded data. To this end, this work presents and validates a new scalable acquisition system based on multiple myRIO devices and digital MEMS (Micro-Electro-Mechanical System) accelerometers, intended for modal analysis of large structures.
View Article and Find Full Text PDFThis paper presents the design, development and testing of a low-cost Structural Health Monitoring (SHM) system based on MEMS (Micro Electro-Mechanical Systems) triaxial accelerometers. A new control system composed by a myRIO platform, managed by specific LabVIEW software, has been developed. The LabVIEW software also computes the frequency response functions for the subsequent modal analysis.
View Article and Find Full Text PDF