Publications by authors named "Antoinette Santoro"

Reported incidence of postoperative opioid-induced respiratory depression (OIRD) ranges from 0.5-41% and is not reliably predicted by traditional risk factors. This study tests a new methodology to investigate ventilatory chemosensitivity as a new potential risk factor and explore OIRD distribution across sleep and wakefulness.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? The aim was to evaluate the degree to which increases in haematocrit alter cerebral blood flow and cerebral oxygen delivery during acclimatization to high altitude. What is the main finding and its importance? Through haemodilution, we determined that, after 1 week of acclimatization, the primary mechanism contributing to the cerebral blood flow response during acclimatization is an increase in haemoglobin and haematocrit. The remaining contribution to the cerebral blood flow response during acclimatization is likely to be attributable to ventilatory acclimatization.

View Article and Find Full Text PDF

The determining mechanisms of a maximal hyperoxic apnea duration in elite apneists have remained unexplored. We tested the hypothesis that maximal hyperoxic apnea duration in elite apneists is related to forced vital capacity (FVC) but not the central chemoreflex (for CO). Eleven elite apneists performed a maximal dry static-apnea with prior hyperoxic (100% oxygen) pre-breathing, and a central chemoreflex test via a hyperoxic re-breathing technique (hyperoxic-hypercapnic ventilatory response: HCVR); expressed as the increase in ventilation (pneumotachometry) per increase in arterial CO tension (PaCO; radial artery).

View Article and Find Full Text PDF

The cerebral metabolic rate of oxygen (CMRO) is reduced during apnea that yields profound hypoxia and hypercapnia. In this study, to dissociate the impact of hypoxia and hypercapnia on the reduction in CMRO, 11 breath-hold competitors completed three apneas under: (a) normal conditions (NM), yielding severe hypercapnia and hypoxemia, (b) with prior hyperventilation (HV), yielding severe hypoxemia only, and (c) with prior 100% oxygen breathing (HX), yielding the greatest level of hypercapnia, but in the absence of hypoxemia. The CMRO was calculated from the product of cerebral blood flow (ultrasound) and the radial artery-jugular venous oxygen content difference (cannulation).

View Article and Find Full Text PDF