Controlled charge flows are fundamental to many areas of science and technology, serving as carriers of energy and information, as probes of material properties and dynamics and as a means of revealing or even inducing broken symmetries. Emerging methods for light-based current control offer particularly promising routes beyond the speed and adaptability limitations of conventional voltage-driven systems. However, optical generation and manipulation of currents at nanometre spatial scales remains a basic challenge and a crucial step towards scalable optoelectronic systems for microelectronics and information science.
View Article and Find Full Text PDFNonlinear optical spectroscopies are powerful tools for investigating both static material properties and light-induced dynamics. Terahertz (THz) emission spectroscopy has emerged in the past several decades as a versatile method for directly tracking the ultrafast evolution of physical properties, quasiparticle distributions, and order parameters within bulk materials and nanoscale interfaces. Ultrafast optically-induced THz radiation is often analyzed mechanistically in terms of relative contributions from nonlinear polarization, magnetization, and various transient free charge currents.
View Article and Find Full Text PDFControlling the photoexcited properties and behavior of hybrid perovskites by halide doping has the potential to impact a wide range of emerging technologies, including solar cells and radiation detectors. Crystalline samples of methylammonium lead bromide substituted with chlorine (MAPbBrCl) were examined by transient reflectivity spectroscopy and nonadiabatic molecular dynamics simulations. At picosecond time scales, the addition of chlorine to the perovskite crystal increased the observed rate of hot carrier cooling and the calculated electron-phonon coupling constants.
View Article and Find Full Text PDFInducing new phases in thick films via vertical lattice strain is one of the critical advantages of vertically aligned nanocomposites (VANs). In SrTiO (STO), the ground state is ferroelastic, and the ferroelectricity in STO is suppressed by the orthorhombic transition. Here, we explore whether vertical lattice strain in three-dimensional VANs can be used to induce new ferroelectric phases in SrTiO:MgO (STO:MgO) VAN thin films.
View Article and Find Full Text PDFEmerging photonic functionalities are mostly governed by the fundamental principle of Lorentz reciprocity. Lifting the constraints imposed by this principle could circumvent deleterious effects that limit the performance of photonic systems. Most efforts to date have been limited to waveguide platforms.
View Article and Find Full Text PDFUltra-lightweight deployable antennas with high-gain are pivotal communication components for small satellites, which are intrinsically constrained in size, weight, and power. In this work, we design and demonstrate metasurface-based ultra-lightweight flat off-axis reflectarrays for microwave beam collimation and focusing, similar to a parabolic dish-antenna. Our ultra-thin reflectarrays employ resonators of variable sizes to cover the full 2π phase range, and are arranged on the metasurface to realize a two-dimensional parabolic focusing phase distribution.
View Article and Find Full Text PDFRoom-temperature magnetoelectric (ME) coupling is developed in artificial multilayers and nanocomposites composed of magnetostrictive and electrostrictive materials. While the coupling mechanisms and strengths in multilayers are widely studied, they are largely unexplored in vertically aligned nanocomposites (VANs), even though theory has predicted that VANs exhibit much larger ME coupling coefficients than multilayer structures. Here, strong transverse and longitudinal ME coupling in epitaxial BaTiO:CoFeO VANs measured by both optical second harmonic generation and piezoresponse force microscopy under magnetic fields is reported.
View Article and Find Full Text PDFDuring the past decades, major advances have been made in both the generation and detection of infrared light; however, its efficient wavefront manipulation and information processing still encounter great challenges. Efficient and fast optoelectronic modulators and spatial light modulators are required for mid-infrared imaging, sensing, security screening, communication and navigation, to name a few. However, their development remains elusive, and prevailing methods reported so far have suffered from drawbacks that significantly limit their practical applications.
View Article and Find Full Text PDFSolar energy promises a viable solution to meet the ever-increasing power demand by providing a clean, renewable energy alternative to fossil fuels. For solar thermophotovoltaics (STPV), high-temperature absorbers and emitters with strong spectral selectivity are imperative to efficiently couple solar radiation into photovoltaic cells. Here, we demonstrate refractory metasurfaces for STPV with tailored absorptance and emittance characterized by in situ high-temperature measurements, featuring thermal stability up to at least 1200 °C.
View Article and Find Full Text PDFWe demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens.
View Article and Find Full Text PDFBlack TiO2 nanoparticles with a crystalline core and amorphous-shell structure exhibit superior optoelectronic properties in comparison with pristine TiO2. The fundamental mechanisms underlying these enhancements, however, remain unclear, largely due to the inherent complexities and limitations of powder materials. Here, we fabricate TiO2 homojunction films consisting of an oxygen-deficient amorphous layer on top of a highly crystalline layer, to simulate the structural/functional configuration of black TiO2 nanoparticles.
View Article and Find Full Text PDFMetamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature. This class of micro- and nano-structured artificial media have attracted great interest during the past 15 years and yielded ground-breaking electromagnetic and photonic phenomena. However, the high losses and strong dispersion associated with the resonant responses and the use of metallic structures, as well as the difficulty in fabricating the micro- and nanoscale 3D structures, have hindered practical applications of metamaterials.
View Article and Find Full Text PDFWe have performed ultrafast optical microscopy on single flakes of atomically thin CVD-grown molybdenum disulfide, using non-degenerate femtosecond pump-probe spectroscopy to excite and probe carriers above and below the indirect and direct band gaps. These measurements reveal the influence of layer thickness on carrier dynamics when probing near the band gap. Furthermore, fluence-dependent measurements indicate that carrier relaxation is primarily influenced by surface-related defect and trap states after above-bandgap photoexcitation.
View Article and Find Full Text PDFWe demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations.
View Article and Find Full Text PDFWe design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate that absorption efficiencies greater than 99% can be achieved at two different frequencies under normal incidence. We employ a design scheme with graphene integration, which allows independent tuning of individual absorption frequencies by electrostatically changing the Fermi energy of the graphene layer.
View Article and Find Full Text PDFPlasmonic structures with high symmetry, such as double-identical gap split ring resonators, possess dark eigenmodes. These dark eigenmodes are dominated by magnetic dipole and/or higher-order multi-poles such as electric quadrapoles. Consequently these dark modes interact very weakly with the surrounding environment, and can have very high quality factors (Q).
View Article and Find Full Text PDFPolarization is one of the basic properties of electromagnetic waves conveying valuable information in signal transmission and sensitive measurements. Conventional methods for advanced polarization control impose demanding requirements on material properties and attain only limited performance. We demonstrated ultrathin, broadband, and highly efficient metamaterial-based terahertz polarization converters that are capable of rotating a linear polarization state into its orthogonal one.
View Article and Find Full Text PDFWe experimentally demonstrate a planar terahertz Fano metamaterial with an ultrahigh quality (Q) factor of 227. This is achieved by the excitation of the nonradiative dark modes by introducing a tiny asymmetry in the metamaterial structure. The extremely sharp quadrupole and Fano resonances are excited at normal incidence for orthogonal polarizations of the electric field.
View Article and Find Full Text PDFRecently reported metamaterial analogues of electromagnetically induced transparency enable a unique route to endow classical optical structures with aspects of quantum optical systems. This method opens up many fascinating prospects on novel optical components, such as slow light units, highly sensitive sensors and nonlinear devices. In particular, optical control of electromagnetically induced transparency in metamaterials promises essential application opportunities in optical networks and terahertz communications.
View Article and Find Full Text PDFWe present the design, numerical simulations and experimental measurements of terahertz metamaterial absorbers with a broad and flat absorption top over a wide incidence angle range for either transverse electric or transverse magnetic polarization depending on the incident direction. The metamaterial absorber unit cell consists of two sets of structures resonating at different but close frequencies. The overall absorption spectrum is the superposition of individual components and becomes flat at the top over a significant bandwidth.
View Article and Find Full Text PDFSwitching the handedness, or the chirality, of a molecule is of great importance in chemistry and biology, as molecules of different handedness exhibit dramatically different physiological properties and pharmacological effects. Here we experimentally demonstrate handedness switching in metamaterials, a new class of custom-designed composites with deep subwavelength building blocks, in response to external optical stimuli. The metamolecule monolayer flips the ellipticity and rotates the polarization angle of light in excess of 10° under optical excitation, a much stronger electromagnetic effect than that of naturally available molecules.
View Article and Find Full Text PDFWe demonstrate the broadening of fundamental resonance in terahertz metamaterial by successive insertion of metal rings in the original unit cell of a split ring resonator (SRR) forming an inter connected nested structure. With the subsequent addition of each inner ring, the fundamental resonance mode shows gradual broadening and blue shift. For a total of four rings in the structure the resonance linewidth is enhanced by a factor of four and the blue shift is as large as 316 GHz.
View Article and Find Full Text PDFWe experimentally and numerically study the nature of coupling between laterally paired terahertz metamaterial split-ring resonators. Coupling is shown to modify the inductive-capacitive (LC) resonances resulting in either red or blue-shifting. Results indicate that tuning of the electric and magnetic coupling parameters may be accomplished not by changing the orientation or density of SRRs, but by a design modification at the unit cell level.
View Article and Find Full Text PDF