Publications by authors named "Antoine de Morree"

Background: There are currently no proven methods to reverse muscle loss in humans, which is caused by trauma (e.g., volumetric muscle loss, VML), genetic neuromuscular diseases (e.

View Article and Find Full Text PDF

Adult muscle stem cells (MuSCs) are known to replicate upon activation before differentiating and fusing to regenerate myofibers. It is unclear whether MuSC differentiation is intrinsically linked to cell division, which has implications for stem cell population maintenance. We use single-cell RNA-sequencing to identify transcriptionally diverse subpopulations of MuSCs after 5 days of a growth stimulus in adult muscle.

View Article and Find Full Text PDF

Adult stem cells play key roles in tissue homeostasis and regeneration. Recent evidence suggests that dietary interventions can significantly impact adult stem cell function. Some of these effects depend on ketone bodies.

View Article and Find Full Text PDF

Adult stem cells play key roles in homeostasis and tissue repair. These cells are regulated by a tight control of transcriptional programs. For example, muscle stem cells (MuSCs), located beneath the basal lamina, exist in the quiescent state but can transition to an activated, proliferative state upon injury.

View Article and Find Full Text PDF

Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools.

View Article and Find Full Text PDF
Article Synopsis
  • Aging slows down the activation and increases the death of skeletal muscle stem cells (MuSCs), which leads to poor muscle repair.
  • Researchers used a multiomics approach, single-cell analysis, and functional tests to compare MuSCs from young and old mice, revealing that glutathione (GSH) metabolism is disrupted in older cells.
  • They discovered that older MuSCs form two distinct groups based on their GSH functionality and identified a mechanism involving NRF2 and NF-κB that maintains this division, suggesting that manipulating GSH levels could help reverse aging effects in MuSCs.
View Article and Find Full Text PDF

Skeletal muscle harbors distinct populations of adult stem cells that contribute to the homeostasis and repair of the tissue. Skeletal muscle stem cells (MuSCs) have the ability to make new muscle, whereas fibro-adipogenic progenitors (FAPs) contribute to stromal supporting tissues and have the ability to make fibroblasts and adipocytes. Both MuSCs and FAPs reside in a state of prolonged reversible cell cycle exit, called quiescence.

View Article and Find Full Text PDF

In aging, skeletal muscle strength and regenerative capacity decline, due in part to functional impairment of muscle stem cells (MuSCs), yet the underlying mechanisms remain elusive. Here, we capitalize on mass cytometry to identify high CD47 expression as a hallmark of dysfunctional MuSCs (CD47) with impaired regenerative capacity that predominate with aging. The prevalent CD47 MuSC subset suppresses the residual functional CD47 MuSC subset through a paracrine signaling loop, leading to impaired proliferation.

View Article and Find Full Text PDF

Short-term fasting is beneficial for the regeneration of multiple tissue types. However, the effects of fasting on muscle regeneration are largely unknown. Here, we report that fasting slows muscle repair both immediately after the conclusion of fasting as well as after multiple days of refeeding.

View Article and Find Full Text PDF

Molecular characterization of cell types using single-cell transcriptome sequencing is revolutionizing cell biology and enabling new insights into the physiology of human organs. We created a human reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the same donor. This atlas enabled molecular characterization of more than 400 cell types, their distribution across tissues, and tissue-specific variation in gene expression.

View Article and Find Full Text PDF

A key property of adult stem cells is their ability to persist in a quiescent state for prolonged periods of time. The quiescent state is thought to contribute to stem cell resilience by limiting accumulation of DNA replication–associated mutations. Moreover, cellular stress response factors are thought to play a role in maintaining quiescence and stem cell integrity.

View Article and Find Full Text PDF

The extent splicing is regulated at single-cell resolution has remained controversial due to both available data and methods to interpret it. We apply the SpliZ, a new statistical approach, to detect cell-type-specific splicing in >110K cells from 12 human tissues. Using 10X Chromium data for discovery, 9.

View Article and Find Full Text PDF

Aging impairs tissue repair. This is pronounced in skeletal muscle, whose regeneration by muscle stem cells (MuSCs) is robust in young adult animals but inefficient in older organisms. Despite this functional decline, old MuSCs are amenable to rejuvenation through strategies that improve the systemic milieu, such as heterochronic parabiosis.

View Article and Find Full Text PDF

Adult stem cells are essential for tissue homeostasis. In skeletal muscle, muscle stem cells (MuSCs) reside in a quiescent state, but little is known about the mechanisms that control homeostatic turnover. Here we show that, in mice, the variation in MuSC activation rate among different muscles (for example, limb versus diaphragm muscles) is determined by the levels of the transcription factor Pax3.

View Article and Find Full Text PDF

Muscle stem cells (MuSCs) persist in a quiescent state and activate in response to specific stimuli. The quiescent state is both actively maintained and dynamically regulated. However, analyses of quiescence have come primarily from cells removed from their niche.

View Article and Find Full Text PDF

Tissue regeneration depends on the timely activation of adult stem cells. In skeletal muscle, the adult stem cells maintain a quiescent state and proliferate upon injury. We show that muscle stem cells (MuSCs) use direct translational repression to maintain the quiescent state.

View Article and Find Full Text PDF

The myogenic regulatory factor MyoD has been implicated as a key regulator of myogenesis, and yet there is little information regarding its upstream regulators. We found that Deltex2 inhibits myogenic differentiation in vitro, and that skeletal muscle stem cells from Deltex2 knockout mice exhibit precocious myogenic differentiation and accelerated regeneration in response to injury. Intriguingly, Deltex2 inhibits myogenesis by suppressing transcription, and the Deltex2 knockout phenotype can be rescued by a loss-of-function allele for In addition, we obtained evidence that Deltex2 regulates MyoD expression by promoting the enrichment of histone 3 modified by dimethylation at lysine 9 at a key regulatory region of the locus.

View Article and Find Full Text PDF

A promising therapeutic strategy for diverse genetic disorders involves transplantation of autologous stem cells that have been genetically corrected ex vivo. A major challenge in such approaches is a loss of stem cell potency during culture. Here we describe an artificial niche for maintaining muscle stem cells (MuSCs) in vitro in a potent, quiescent state.

View Article and Find Full Text PDF

Dysferlin is mutated in a group of muscular dystrophies commonly referred to as dysferlinopathies. It is highly expressed in skeletal muscle, where it is important for sarcolemmal maintenance. Recent studies show that dysferlin is also expressed in monocytes.

View Article and Find Full Text PDF

Background: Dysferlinopathies are caused by mutations in the dysferlin gene (DYSF). Diagnosis is complex due to the high clinical variability of the disease and because dysferlin expression in the muscle biopsy may be secondarily reduced due to a primary defect in some other gene. Dysferlin is also expressed in peripheral blood monocytes (PBM).

View Article and Find Full Text PDF

The dysferlinopathies (e.g. LGMD2b, Myoshi myopathy) are progressive, adult-onset muscle wasting syndromes caused by mutations in the gene coding for dysferlin.

View Article and Find Full Text PDF

AHNAK is a 700-kDa protein involved in cytoarchitecture and calcium signaling. It is secondarily reduced in muscle of dysferlinopathy patients and accumulates in muscle of calpainopathy patients, both affected by a muscular dystrophy. AHNAK directly interacts with dysferlin.

View Article and Find Full Text PDF

We introduce a framework for predicting novel protein-protein interactions (PPIs), based on Fisher's method for combining probabilities of predictions that are based on different data sources, such as the biomedical literature, protein domain and mRNA expression information. Our method compares favorably to our previous method based on text-mining alone and other methods such as STRING. We evaluated our algorithms through the prediction of experimentally found protein interactions underlying Muscular Dystrophy, Huntington's Disease and Polycystic Kidney Disease, which had not yet been recorded in protein-protein interaction databases.

View Article and Find Full Text PDF