Superspreading has been suggested to be a major driver of overall transmission in the case of SARS-CoV-2. It is, therefore, important to statistically investigate the tail features of superspreading events (SSEs) to better understand virus propagation and control. Our extreme value analysis of different sources of secondary case data indicates that case numbers of SSEs associated with SARS-CoV-2 may be fat-tailed, although substantially less so than predicted recently in the literature, but also less important relative to SSEs associated with SARS-CoV.
View Article and Find Full Text PDFUnlabelled: Expectiles induce a law-invariant risk measure that has recently gained popularity in actuarial and financial risk management applications. Unlike quantiles or the quantile-based Expected Shortfall, the expectile risk measure is coherent and elicitable. The estimation of extreme expectiles in the heavy-tailed framework, which is reasonable for extreme financial or actuarial risk management, is not without difficulties; currently available estimators of extreme expectiles are typically biased and hence may show poor finite-sample performance even in fairly large samples.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.