Norflurazon is a bleaching herbicide known to block carotenoid biosynthesis by inhibiting phytoene desaturase activity. Soybean plants were treated with norflurazon, and we examined the effects on the desaturation of lipid molecular species in leaves using ammonium [1-(14)C] oleate labeling. In monogalactosyldiacylglycerol (MGDG), the main chloroplast lipid, a decrease in 18:3/18:3 molecular species and an increase in its precursors 18:2/18:3 and 18:2/18:2 were observed suggesting that the omega(3) FAD7 desaturase activity in planta was inhibited by norflurazon.
View Article and Find Full Text PDFWith rare exceptions, dicot plastids have been reported to contain only a multisubunit (prokaryotic) form of acetyl-coA carboxylase (ACCase), the first committed step of lipid biosynthesis. The sensitivity of most monocots to cyclohexanediones (CHDs) such as sethoxydim, has been shown to be associated with the presence in their plastids of a multifunctional (eukaryotic) form of ACCase. Little is known about the effects of sethoxydim on lipid metabolism and ACCase activity in dicots.
View Article and Find Full Text PDFTwo mutants of Chlamydomonas reinhardtii, mf1 and mf2, characterized by a marked reduction in their phosphatidylglycerol content together with a complete loss in its Delta3-trans hexadecenoic acid-containing form, also lost photosystem II (PSII) activity. Genetic analysis of crosses between mf2 and wild-type strains shows a strict cosegregation of the PSII and lipid deficiencies, while phenotypic analysis of phototrophic revertant strains suggests that one single nuclear mutation is responsible for the pleiotropic phenotype of the mutants. The nearly complete absence of PSII core is due to a severely decreased synthesis of two subunits, D1 and apoCP47, which is not due to a decrease in translation initiation.
View Article and Find Full Text PDF