In this review, we detail the most common experimental approaches to assess and characterize protein intrinsic structural disorder, with the notable exception of NMR and EPR spectroscopy, two ideally suited approaches that will be described in depth in two other reviews within this special issue. We discuss the advantages, the limitations, as well as the caveats of the various methods. We also describe less common and more demanding approaches that enable achieving further insights into the conformational properties of IDPs.
View Article and Find Full Text PDFThe polymerase of negative-stranded RNA viruses consists of the large protein (L) and the phosphoprotein (P), the latter serving both as a chaperon and a cofactor for L. We mapped within measles virus (MeV) P the regions responsible for binding and stabilizing L and showed that the coiled-coil multimerization domain (MD) of P is required for gene expression. MeV MD is kinked as a result of the presence of a stammer.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFThe content of intrinsically disordered protein (IDP) is related to organism complexity, evolution, and regulation. In the Plantae, despite their high complexity, experimental investigation of IDP content is lacking. We identified by mass spectrometry 682 heat-resistant proteins from the green alga, Chlamydomonas reinhardtii.
View Article and Find Full Text PDFInSiDDe (In Silico Disorder Design) is a program for the in silico design of intrinsically disordered proteins of desired length and disorder probability. The latter is assessed using IUPred and spans values ranging from 0.55 to 0.
View Article and Find Full Text PDFThe Database of Protein Disorder (DisProt, URL: www.disprot.org) has been significantly updated and upgraded since its last major renewal in 2007.
View Article and Find Full Text PDFUnlabelled: Adenylate kinases (ADK) are key enzymes that maintain the energetic balance in cellular compartments by catalyzing the reaction: AMP + ATP↔2 ADP. Here, we analyzed the chloroplast ADK 3 from the green alga, Chlamydomonas reinhardtii for the first time. This enzyme bears a C-terminal extension that is highly similar to the C-terminal end of the intrinsically disordered protein CP12 that plays a major role in the redox regulation of key enzymes of the Calvin-Benson cycle like glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase.
View Article and Find Full Text PDF