Publications by authors named "Antoine Roy-Gobeil"

Long-range electron transfer is a ubiquitous process that plays an important role in electrochemistry, biochemistry, organic electronics, and single molecule electronics. Fundamentally, quantum mechanical processes, at their core, manifest through both electron tunneling and the associated transition between quantized nuclear vibronic states (intramolecular vibrational relaxation) mediated by electron-nuclear coupling. Here, we report on measurements of long-range electron transfer at the interface between a single ferrocene molecule and a gold substrate separated by a hexadecanethiol quantum tunneling barrier.

View Article and Find Full Text PDF

In this work, we explore Franck-Condon blockade in the "redox limit," where nuclear relaxation processes occur much faster than the rate of electron transfer. To this end, the quantized rate expressions for electron transfer are recast in terms of a quantized redox density of states (DOS) within a single phonon mode model. In the high temperature regime, this single-particle picture formulation of electron transfer is shown to agree well with the semi-classical rate and DOS expressions developed by Gerischer and Hopfield.

View Article and Find Full Text PDF

Electric charge detection by atomic force microscopy (AFM) with single-electron resolution (e-EFM) is a promising way to investigate the electronic level structure of individual quantum dots (QDs). The oscillating AFM tip modulates the energy of the QDs, causing single electrons to tunnel between QDs and an electrode. The resulting oscillating electrostatic force changes the resonant frequency and damping of the AFM cantilever, enabling electrometry with a single-electron sensitivity.

View Article and Find Full Text PDF

We present theoretical and experimental studies of the effect of the density of states of a quantum dot (QD) on the rate of single-electron tunneling that can be directly measured by electrostatic force microscopy (e-EFM) experiments. In e-EFM, the motion of a biased atomic force microscope cantilever tip modulates the charge state of a QD in the Coulomb blockade regime. The charge dynamics of the dot, which is detected through its back-action on the capacitavely coupled cantilever, depends on the tunneling rate of the QD to a back-electrode.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona6tu0oh35qr9v1au5j197eu8cnt7bb8s): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once