Publications by authors named "Antoine Rohel"

Lumbar erector spinae (LES) contribute to spine postural and voluntary control. Transcranial magnetic stimulation (TMS) preferentially depolarizes different neural circuits depending on the direction of electrical currents evoked in the brain. Posteroanterior current (PA-TMS) and anteroposterior (AP-TMS) current would, respectively, depolarize neurons in the primary motor cortex (M1) and the premotor cortex.

View Article and Find Full Text PDF

Low back pain (LBP) often modifies spine motor control, but the neural origin of these motor control changes remains largely unexplored. This study aimed to determine the impact of experimental low back pain on the excitability of cortical, subcortical, and spinal networks involved in the control of back muscles. Thirty healthy subjects were recruited and allocated to pain (capsaicin and heat) or control (heat) groups.

View Article and Find Full Text PDF

Different directions of transcranial magnetic stimulation (TMS) can activate different neuronal circuits. Whereas posteroanterior current (PA-TMS) depolarizes mainly interneurons in primary motor cortex (M1), an anteroposterior current (AP-TMS) has been suggested to activate different M1 circuits and perhaps axons from the premotor regions. Although M1 is also involved in the control of axial muscles, no study has explored whether different current directions activate different M1 circuits that may have distinct functional roles.

View Article and Find Full Text PDF

Objective: We conducted a systematic review/meta-analysis to evaluate noninvasive brain stimulation (NIBS) efficacy to alleviate pain and improve disability in low back pain (LBP).

Materials And Methods: A systematic literature search was performed by a librarian in MEDLINE, Embase, EBM Reviews, CINAHL, and Web of Science databases (last search: January 14, 2021). Data were pooled by the number of sessions and follow-up periods.

View Article and Find Full Text PDF

Background And Objective: Pain influences motor control. Previous reviews observed that pain reduces the excitability of corticospinal projections to muscles tested with transcranial magnetic stimulation. However, the independent effect of the type of pain models (tonic, phasic), pain location and tissues targeted (e.

View Article and Find Full Text PDF