Congenital abnormalities of the kidney and the urinary tract (CAKUT) belong to the most common birth defects in human, but the molecular basis for the majority of CAKUT patients remains unknown. Here we show that the transcription factor SOX11 is a crucial regulator of kidney development. SOX11 is expressed in both mesenchymal and epithelial components of the early kidney anlagen.
View Article and Find Full Text PDFThe epithelial Wolffian duct (WD) inserts into the cloaca (primitive bladder) before metanephric kidney development, thereby establishing the initial plumbing for eventual joining of the ureters and bladder. Defects in this process cause common anomalies in the spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). However, developmental, cellular, and molecular mechanisms of WD-cloaca fusion are poorly understood.
View Article and Find Full Text PDFIn the kidney, formation of the functional filtration units, the nephrons, is essential for postnatal life. During development, mesenchymal progenitors tightly regulate the balance between self-renewal and differentiation to give rise to all nephron epithelia. Here, we investigated the functions of the Hippo pathway serine/threonine-protein kinases Lats1 and Lats2, which phosphorylate and inhibit the transcriptional coactivators Yap and Taz, in nephron progenitor cells.
View Article and Find Full Text PDFBranching morphogenesis is a complex biological process common to the development of most epithelial organs. Here we demonstrate that NF2, LATS1/2 and YAP play a critical role in branching morphogenesis in the mouse kidney. Removal of Nf2 or Lats1/2 from the ureteric bud (UB) lineage causes loss of branching morphogenesis that is rescued by loss of one copy of Yap and Taz, and phenocopied by YAP overexpression.
View Article and Find Full Text PDFAfter acute kidney injury (AKI), surviving cells within the nephron proliferate and repair. We identify Sox9 as an acute epithelial stress response in renal regeneration. Translational profiling after AKI revealed a rapid upregulation of Sox9 within proximal tubule (PT) cells, the nephron cell type most vulnerable to AKI.
View Article and Find Full Text PDFDespite the high occurrence of congenital abnormalities of the lower urinary tract in humans, the molecular, cellular and morphological aspects of their development are still poorly understood. Here, we use a conditional knockout approach to inactivate within the nephric duct (ND) lineage the two effectors of the Hippo pathway, Yap and Taz. Deletion of Yap leads to hydronephrotic kidneys with blind-ending megaureters at birth.
View Article and Find Full Text PDFRegulation of the balance between progenitor self-renewal and differentiation is crucial to development. In the mammalian kidney, reciprocal signalling between three lineages (stromal, mesenchymal and ureteric) ensures correct nephron progenitor self-renewal and differentiation. Loss of either the atypical cadherin FAT4 or its ligand Dachsous 1 (DCHS1) results in expansion of the mesenchymal nephron progenitor pool, called the condensing mesenchyme (CM).
View Article and Find Full Text PDFFSGS is the most common primary glomerular disease underlying ESRD in the United States and is increasing in incidence globally. FSGS results from podocyte injury, yet the mechanistic details of disease pathogenesis remain unclear. This has resulted in an unmet clinical need for cell-specific therapy in the treatment of FSGS and other proteinuric kidney diseases.
View Article and Find Full Text PDFYap is a transcriptional co-activator that regulates cell proliferation and apoptosis downstream of the Hippo kinase pathway. We investigated Yap function during mouse kidney development using a conditional knockout strategy that specifically inactivated Yap within the nephrogenic lineage. We found that Yap is essential for nephron induction and morphogenesis, surprisingly, in a manner independent of regulation of cell proliferation and apoptosis.
View Article and Find Full Text PDFCongenital abnormalities of the kidney and urinary tract are some of the most common defects detected in the unborn child. Kidney growth is controlled by the GDNF/RET signalling pathway, but the molecular events required for the activation of RET downstream targets are still poorly understood. Here we show that SOX9, a gene involved in campomelic dysplasia (CD) in humans, together with its close homologue SOX8, plays an essential role in RET signalling.
View Article and Find Full Text PDF