NADPH oxidases (NOX) have many biological roles, but their regulation to control production of potentially toxic ROS molecules remains unclear. A previously identified insertion sequence of 21 residues (called NIS) influences NOX activity, and its predicted flexibility makes it a good candidate for providing a dynamic switch controlling the NOX active site. We constructed NOX2 chimeras in which NIS had been deleted or exchanged with those from other NOXs (NIS1, 3 and 4).
View Article and Find Full Text PDFMsrPQ is a newly identified methionine sulfoxide reductase system found in bacteria, which appears to be specifically involved in the repair of periplasmic proteins oxidized by hypochlorous acid. It involves two proteins: a periplasmic one, MsrP, previously named YedY, carrying out the Msr activity, and MsrQ, an integral b-type heme membrane-spanning protein, which acts as the specific electron donor to MsrP. MsrQ, previously named YedZ, was mainly characterized by bioinformatics as a member of the FRD superfamily of heme-containing membrane proteins, which include the NADPH oxidase proteins (NOX/DUOX).
View Article and Find Full Text PDFChemokines are chemotactic cytokines comprised of 70-100 amino acids. The chemokines CXCL12 and CCL5 are the endogenous ligands of the CXCR4 and CCR5 G protein-coupled receptors that are also HIV co-receptors. Biochemical, structural and functional studies of receptors are ligand-consuming and the cost of commercial chemokines hinders their use in such studies.
View Article and Find Full Text PDFFlavocytochrome b(558) (cytb) of phagocytes is a heterodimeric integral membrane protein composed of two subunits, p22(phox) and gp91(phox). The latter subunit, also known as Nox2, has a cytosolic C-terminal "dehydrogenase domain" containing FAD/NADPH-binding sites. The N-terminal half of Nox2 contains six predicted transmembrane α-helices coordinating two hemes.
View Article and Find Full Text PDFThe X(+)-linked chronic granulomatous disease (X(+)-CGD) variants are natural mutants characterized by defective NADPH oxidase activity but with normal Nox2 expression. According to the three-dimensional model of the cytosolic Nox2 domain, most of the X(+)-CGD mutations are located in/or close to the FAD/NADPH binding regions. A structure/function study of this domain was conducted in X(+)-CGD PLB-985 cells exactly mimicking 10 human variants: T341K, C369R, G408E, G408R, P415H, P415L, Δ507QKT509-HIWAinsert, C537R, L546P, and E568K.
View Article and Find Full Text PDFNADPH oxidase is a crucial element of phagocytes involved in microbicidal mechanisms. It becomes active when membrane-bound cytochrome b(558), the redox core, is assembled with cytosolic p47(phox), p67(phox), p40(phox), and rac proteins to produce superoxide, the precursor for generation of toxic reactive oxygen species. In a previous study, we demonstrated that the potential second intracellular loop of Nox2 was essential to maintaining NADPH oxidase activity by controlling electron transfer from FAD to O(2).
View Article and Find Full Text PDFGlutaredoxins (GRX) are redox proteins which use glutathione as a cofactor and are divided into two classes, monothiol and dithiol. In each class, several GRX have been shown to form [Fe2S2] cluster coordinating homodimers. The dithiol GRX homodimer is proposed to serve as a sequestration form and its iron-sulfur cluster as an oxidative stress sensor.
View Article and Find Full Text PDFWhen produced in Escherichia coli, the CGFS-type monothiol Grxs from this organism (EcGrx4p) and the model cyanobacterium Synechocystis (SyGrx3p) exist as a dimeric iron-sulfur containing holoprotein or as a monomeric apoprotein in solution. Spectroscopic and site-directed mutagenesis analyses show that the SyGrx3 holoprotein contains a subunit-bridging [2Fe-2S] cluster that is ligated by the catalytic cysteine located in the CGFS motif of each monomer and the cysteines of two molecules of glutathione. The biochemical characterization of several monothiol Grxs from the cyanobacteria Gloeobacter violaceus (GvGrx3p) and Thermosynechococcus elongatus (TeGrx3p), the yeast Saccharomyces cerevisiae (ScGrx3p, ScGrx4p, and ScGrx5p), the plant Arabidopsis thaliana (AtGrx5p), and human (HsGrx5p) indicate that the incorporation of a GSH-ligated [2Fe-2S] center is a common feature of prokaryotic and eukaryotic CGFS-active site monothiol Grxs.
View Article and Find Full Text PDFBackground: Cadmium is a persistent pollutant that threatens most biological organisms, including cyanobacteria that support a large part of the biosphere. Using a multifaceted approach, we have investigated the global responses to Cd and other relevant stresses (H2O2 and Fe) in the model cyanobacterium Synechocystis PCC6803.
Results: We found that cells respond to the Cd stress in a two main temporal phases process.
In plants, the last step of the biotin biosynthetic pathway is localized in mitochondria. This chemically complex reaction is catalyzed by the biotin synthase protein, encoded by the bio2 gene in Arabidopsis thaliana. Unidentified mitochondrial proteins in addition to the bio2 gene product are obligatory for the reaction to occur.
View Article and Find Full Text PDF