Publications by authors named "Antoine Perasso"

Many SARS-CoV-2 variants have appeared over the last months, and many more will continue to appear. Understanding the competition between these different variants could help make future predictions on the evolution of epidemics. In this study we use a mathematical model to investigate the impact of three different SARS-CoV-2 variants on the spread of COVID-19 across France, between January-May 2021 (before vaccination was extended to the full population).

View Article and Find Full Text PDF

Metaecoepidemic models generalize metapopulation systems, combining local population dynamics with inter-patch migration coupled with an epidemic proliferation. A resource-consumer model is introduced with an ecosystem composed by two patches, in which consumers can freely move. A disease affects resources of the second patch.

View Article and Find Full Text PDF

Cholera is a bacterial disease, its spread is strongly influenced by environmental factors and some socio-economic factors such as hygiene standards and nutrition of the population. This paper is devoted to the modelling of the impact of climatic factors and human behaviour on the spread of cholera. The mathematical modelling incorporates the direct transmission and the indirect transmission due to environmental knowledge.

View Article and Find Full Text PDF

The ability for a generalist consumer to adapt its foraging strategy (the multi-species functional response, MSFR) is a milestone in ecology as it contributes to the structure of food webs. The trophic interaction between a generalist predator, as the red fox or the barn owl, and its prey community, mainly composed of small mammals, has been empirically and theoretically widely studied. However, the extent to which these predators adapt their diet according to both multi-annual changes in multiple prey species availability (frequency dependence) and the variation of the total prey density (density dependence) is unexplored.

View Article and Find Full Text PDF

Multi-host trophically transmitted parasite (TTP) is a common life cycle where prey and predators are respectively intermediate and definitive hosts of the parasite. In these systems, the foraging response of the predator toward variations in prey community composition underlies the dynamic of the parasite. Therefore, modeling epidemiological dynamic of infectious diseases considering ecological predator-prey interactions is essential to understand the spreading of parasites in ecosystems.

View Article and Find Full Text PDF