When attempting to land on a ship deck tossed by the sea, helicopter pilots must make sure that the helicopter can develop sufficient lift to be able to safely touchdown. This reminder of affordance theory led us to model and study the affordance of deck-landing-ability, which defines whether it is possible to land safely on a ship deck depending on the helicopter's available lift and the ship's deck heave movements. Two groups of participants with no piloting experience using a laptop helicopter simulator attempted to land either a low-lifter or a heavy-lifter helicopter on a virtual ship deck by either triggering a pre-programmed lift serving as the descent law if it was deemed possible to land, or aborting the deck-landing maneuver.
View Article and Find Full Text PDFScand J Med Sci Sports
February 2023
To benefit from virtual reality (VR) as a complementary tool for training, coaches must determine the proper tools and variables for tracking sports performance. We explored the basketball shooting at several scales (basket-ball, ball-player, and player systems) by monitoring success-rate, and ball and body kinematics. We measured how these scales of analysis allowed tracking players' expertise and perceptual sensitivity to basket distance.
View Article and Find Full Text PDFTo investigate altitude control in honeybees, an optical configuration was designed to manipulate or cancel the optic flow. It has been widely accepted that honeybees rely on the optic flow generated by the ground to control their altitude. Here, we create an optical configuration enabling a better understanding of the mechanism of altitude control in honeybees.
View Article and Find Full Text PDFHelicopter landing on a ship is a visually regulated "rendezvous" task during which pilots must use fine control to land a powerful rotorcraft on the deck of a moving ship tossed by the sea while minimizing the energy at impact. Although augmented reality assistance can be hypothesized to improve pilots' performance and the safety of landing maneuvers by guiding action toward optimal behavior in complex and stressful situations, the question of the optimal information to be displayed to feed the pilots' natural information-movement coupling remains to be investigated. Novice participants were instructed to land a simplified helicopter on a ship in a virtual reality simulator while minimizing energy at impact and landing duration.
View Article and Find Full Text PDFIntroduction: The indications for total hip arthroplasty (THA) after failed internal fixation of a proximal femur fracture vary. Published studies on this topic are broad-ranging and do not distinguish between intracapsular and extracapsular fractures. This led us to conduct a retrospective analysis comparing the clinical outcomes, radiological outcomes, technical problems and complications between these two types of fractures.
View Article and Find Full Text PDFThe present study addresses the effect of the eye position in the cockpit on the flight altitude during the final approach to landing. Three groups of participants with different levels of expertise (novices, trainees, and certified pilots) were given a laptop with a flight simulator and they were asked to maintain a 3.71° glide slope while landing.
View Article and Find Full Text PDFAfter more than 20 years since the introduction of ecological and dynamical approaches in sports research, their promising opportunity for interdisciplinary research has not been fulfilled yet. The complexity of the research process and the theoretical and empirical difficulties associated with an integrated ecological-dynamical approach have been the major factors hindering the generalisation of interdisciplinary projects in sports sciences. To facilitate this generalisation, we integrate the major concepts from the ecological and dynamical approaches to study behaviour as a multi-scale process.
View Article and Find Full Text PDFObjective: The aim of this study was to answer the question, Do drivers take into account the action boundaries of their car when overtaking?
Background: The Morice et al. affordance-based approach to visually guided overtaking suggests that the "overtake-ability" affordance can be formalized as the ratio of the "minimum satisfying velocity" (MSV) of the maneuver to the maximum velocity (V(max)) of the driven car. In this definition, however, the maximum acceleration (A(max)) of the vehicle is ignored.
In theory, a safe approach to an intersection implies that drivers can simultaneously manage two scenarios: they either choose to cross or to give way to an oncoming vehicle. In this article we formalize the critical time for safe crossing (CT cross ) and the critical time for safe stopping (CT stop ) to represent crossing and stopping possibilities, respectively. We describe these critical times in terms of affordances and empirically test their respective contribution to the driver's decision-making process.
View Article and Find Full Text PDFWhile it has been shown that the Global Optic Flow Rate (GOFR) is used in the control of self-motion speed, this study examined its relevance in the control of interceptive actions while walking. We asked participants to intercept approaching targets by adjusting their walking speed in a virtual environment, and predicted that the influence of the GOFR depended on their interception strategy. Indeed, unlike the Constant Bearing Angle (CBA), the Modified Required Velocity (MRV) strategy relies on the perception of self-displacement speed.
View Article and Find Full Text PDFEven if optical correlates of self-motion velocity have already been identified, their contribution to the control of displacement velocity remains to be established. In this study, we used a virtual reality set-up coupled to a treadmill to test the role of both Global Optic Flow Rate (GOFR) and Edge Rate (ER) in the regulation of walking velocity. Participants were required to walk at a constant velocity, corresponding to their preferred walking velocity, while eye height and texture density were manipulated.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
August 2010
Using a two-step approach, Van Soest et al. (2010) recently questioned the pertinence of the conclusions drawn by Bootsma and Van Wieringen (1990) with respect to the visual regulation of an exemplary rapid interceptive action: the attacking forehand drive in table tennis. In the first step, they experimentally compared the movement behaviors of their participants under conditions with and without vision available during the execution of the drive.
View Article and Find Full Text PDFThis study concerns the process by which agents select control laws. Participants adjusted their walking speed in a virtual environment in order to intercept approaching targets. Successful interception can be achieved with a constant bearing angle (CBA) strategy that relies on prospective information, or with a modified required velocity (MRV) strategy, which also includes predictive information.
View Article and Find Full Text PDFThe constant bearing angle (CBA) strategy is a prospective strategy that permits the interception of moving objects. The purpose of the present study is to test this strategy. Participants were asked to walk through a virtual environment and to change, if necessary, their walking speed so as to intercept approaching targets.
View Article and Find Full Text PDFHow can we evaluate the spatio-temporal performance of virtual environments (VE) for research use? Here we show that end-to-end latency (ETEL) of VE can strongly damage users' perceptual and perceptuo-motor behaviors and that it can be considered to be the key factor for evaluating face and functional fidelity of a VE. We used a virtual ball-bouncing task as a paradigmatic example. Ball bouncing is known to exhibit attractive and repelling states whose localization in the racket cycle is sufficiently thin to be changed by small variations of ETEL.
View Article and Find Full Text PDFHow do humans discover stable solutions to perceptual-motor tasks as they interact with the physical environment? We investigate this question using the task of rhythmically bouncing a ball on a racket, for which a passively stable solution is defined. Previously, it was shown that participants exploit this passive stability but can also actively stabilize bouncing under perceptual control. Using a virtual ball-bouncing display, we created new behavioral solutions for rhythmic bouncing by introducing a temporal delay (45 degrees -180 degrees ) between the motion of the physical racket and that of the virtual racket.
View Article and Find Full Text PDF