Oligonucleotide microarrays have been widely used for gene detection and/or quantification of gene expression in various samples ranging from a single organism to a complex microbial assemblage. The success of a microarray experiment, however, strongly relies on the quality of designed probes. Consequently, probe design is of critical importance and therefore multiple parameters should be considered for each probe in order to ensure high specificity, sensitivity, and uniformity as well as potentially quantitative power.
View Article and Find Full Text PDFIn recent years, high-throughput molecular tools have led to an exponential growth of available 16S rRNA gene sequences. Incorporating such data, molecular tools based on target-probe hybridization were developed to monitor microbial communities within complex environments. Unfortunately, only a few 16S rRNA gene-targeted probe collections were described.
View Article and Find Full Text PDFBackground: Metagenomics, based on culture-independent sequencing, is a well-fitted approach to provide insights into the composition, structure and dynamics of environmental viral communities. Following recent advances in sequencing technologies, new challenges arise for existing bioinformatic tools dedicated to viral metagenome (i.e.
View Article and Find Full Text PDFScientificWorldJournal
December 2014
Phylogenetic Oligonucleotide Arrays (POAs) were recently adapted for studying the huge microbial communities in a flexible and easy-to-use way. POA coupled with the use of explorative probes to detect the unknown part is now one of the most powerful approaches for a better understanding of microbial community functioning. However, the selection of probes remains a very difficult task.
View Article and Find Full Text PDFHigh-quality annotation of microsporidian genomes is essential for understanding the biological processes that govern the development of these parasites. Here we present an improved structural annotation method using transcriptional DNA signals. We apply this method to re-annotate four previously annotated genomes, which allow us to detect annotation errors and identify a significant number of unpredicted genes.
View Article and Find Full Text PDFSummary: Metavir is a web server dedicated to the analysis of viral metagenomes (viromes). In addition to classical approaches for analyzing metagenomes (general sequence characteristics, taxonomic composition), new tools developed specifically for viral sequence analysis make it possible to: (i) explore viral diversity through automatically constructed phylogenies for selected marker genes, (ii) estimate gene richness through rarefaction curves and (iii) perform cross-comparison against other viromes using sequence similarities. Metavir is thus unique as a platform that allows a comprehensive virome analysis.
View Article and Find Full Text PDF