Publications by authors named "Antoine Letoublon"

Highly polar materials are usually preferred over weakly polar ones to study strong electron-phonon interactions and its fascinating properties. Here, we report on the achievement of simultaneous confinement of charge carriers and phonons at the vicinity of a 2D vertical homovalent singularity (antiphase boundary, APB) in an (In,Ga)P/SiGe/Si sample. The impact of the electron-phonon interaction on the photoluminescence processes is then clarified by combining transmission electron microscopy, X-ray diffraction, calculations, Raman spectroscopy, and photoluminescence experiments.

View Article and Find Full Text PDF

III-V semiconductors grown on silicon recently appeared as a promising platform to decrease the cost of photonic components and circuits. For nonlinear optics, specific features of the III-V crystal arising from the growth on the nonpolar Si substrate and called antiphase domains (APDs) offer a unique way to engineer the second-order properties of the semiconductor compound. Here we demonstrate the fabrication of microdisk resonators at the interface between a gallium-phosphide layer and its silicon substrate.

View Article and Find Full Text PDF

Low frequency dynamics has been studied in a CHNHPbBr hybrid perovskite single crystal by using four different spectroscopy techniques: coherent inelastic neutron, Raman and Brillouin scatterings, and ultrasound measurements. Sound velocities were measured over five decades in energy to yield the complete set of elastic constants in a hybrid halide perovskite crystal in the pseudocubic plastic phase. The C shear elastic constant is very small, leading to a particularly low resistance to shear stress.

View Article and Find Full Text PDF

This study is carried out in the context of III-V semiconductor monolithic integration on silicon for optoelectronic device applications. X-ray diffraction is combined with atomic force microscopy and scanning transmission electron microscopy for structural characterization of GaP nanolayers grown on Si. GaP has been chosen as the interfacial layer, owing to its low lattice mismatch with Si.

View Article and Find Full Text PDF