We report on the study of a possible first step integration of mode division multiplexed optical component for single-mode fiber networks. State-of-the-art on few-mode erbium-doped fiber amplifiers is used to integrate the amplification function in a single component, which is expected to save energy in comparison to parallelized active components. So as to limit the impact of modal cross-talk, an elliptical-core few-mode erbium-doped fiber has been used to assemble an amplifier sharing setup for different single mode fibers, using non-degenerate modes.
View Article and Find Full Text PDFDesign and experimental characterization of Er(3+)-doped fiber amplifiers supporting 6 spatial modes in wavelength division multiplexing regime are reported. The study is first focused on Er(3+)-doped circular ring-structured profiles accessible with conventional fiber manufacturing techniques. However, these fiber designs, optimized for gain equalization, prove to be difficult to obtain experimentally.
View Article and Find Full Text PDFNumerical and experimental study of a Few-Mode (FM) Erbium Doped Fiber Amplifier (EDFA) suitable for mode division multiplexing (MDM) is reported. Based on numerical simulations, a Few-Mode Erbium Doped Fiber (FM-EDF) has been designed to amplify four mode groups and to equally amplify LP11 and LP21 mode groups with gains greater than 20 dB and with a differential modal gain of less than 1 dB. Experimental results confirmed the simulations with a good concordance.
View Article and Find Full Text PDFFiber Bragg Gratings with reflectivity up to 25 dB have been photo-written in the core of a 2D all-solid Photonic Bandgap Fiber without modification of the guiding properties of the fiber. This result is obtained by combining an appropriate glass composition for the high index inclusions constituting the micro-structured cladding and a photosensitive low index core. Couplings of the fundamental core guided mode with cladding modes are investigated and compared to theoretical predictions.
View Article and Find Full Text PDF