Publications by authors named "Antoine Hocher"

Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms.

View Article and Find Full Text PDF

Genome regulation in eukaryotes revolves around the nucleosome, the fundamental building block of eukaryotic chromatin. Its constituent parts, the four core histones (H3, H4, H2A, H2B), are universal to eukaryotes. Yet despite its exceptional conservation and central role in orchestrating transcription, repair, and other DNA-templated processes, the origins and early evolution of the nucleosome remain opaque.

View Article and Find Full Text PDF

Histone proteins bind DNA and organize the genomes of eukaryotes and most archaea, whereas bacteria rely on different nucleoid-associated proteins. Homology searches have detected putative histone-fold domains in a few bacteria, but whether these function like archaeal/eukaryotic histones is unknown. Here we report that histones are major chromatin components in the bacteria Bdellovibrio bacteriovorus and Leptospira interrogans.

View Article and Find Full Text PDF

DNA in cells is associated with proteins that constrain its structure and affect DNA-templated processes including transcription and replication. HU and histones are the main constituents of chromatin in bacteria and eukaryotes, respectively, with few exceptions. Archaea, in contrast, have diverse repertoires of nucleoid-associated proteins (NAPs).

View Article and Find Full Text PDF

Histones are ubiquitous in eukaryotes where they assemble into nucleosomes, binding and wrapping DNA to form chromatin. One process to modify chromatin and regulate DNA accessibility is the replacement of histones in the nucleosome with paralogous variants. Histones are also present in archaea but whether and how histone variants contribute to the generation of different physiologically relevant chromatin states in these organisms remains largely unknown.

View Article and Find Full Text PDF

Physical contacts between distant loci contribute to regulate genome function. However, the molecular mechanisms responsible for settling and maintaining such interactions remain poorly understood. Here, we investigate the well-conserved interactions between heterochromatin loci.

View Article and Find Full Text PDF

Nucleosomes in eukaryotes act as platforms for the dynamic integration of epigenetic information. Posttranslational modifications are reversibly added or removed and core histones exchanged for paralogous variants, in concert with changing demands on transcription and genome accessibility. Histones are also common in archaea.

View Article and Find Full Text PDF

Specificities associated with chromosomal linearity are not restricted to telomeres. Here, recent results obtained on fission and budding yeast are summarized and an attempt is made to define subtelomeres using chromatin features extending beyond the heterochromatin emanating from telomeres. Subtelomeres, the chromosome domains adjacent to telomeres, differ from the rest of the genome by their gene content, rapid evolution, and chromatin features that together contribute to organism adaptation.

View Article and Find Full Text PDF

Histones are a principal constituent of chromatin in eukaryotes and fundamental to our understanding of eukaryotic gene regulation. In archaea, histones are widespread but not universal: several lineages have lost histone genes. What prompted or facilitated these losses and how archaea without histones organize their chromatin remains largely unknown.

View Article and Find Full Text PDF

Nucleosomes restrict DNA accessibility throughout eukaryotic genomes, with repercussions for replication, transcription, and other DNA-templated processes. How this globally restrictive organization emerged during evolution remains poorly understood. Here, to better understand the challenges associated with establishing globally restrictive chromatin, we express histones in a naive system that has not evolved to deal with nucleosomal structures: .

View Article and Find Full Text PDF

The eukaryotic genome is divided into chromosomal domains of heterochromatin and euchromatin. Transcriptionally silent heterochromatin is found at subtelomeric regions, leading to the telomeric position effect (TPE) in yeast, fly, and human. Heterochromatin generally initiates and spreads from defined loci, and diverse mechanisms prevent the ectopic spread of heterochromatin into euchromatin.

View Article and Find Full Text PDF

Homologous recombination (HR) is a conserved mechanism that repairs broken chromosomes via intact homologous sequences. How different genomic, chromatin and subnuclear contexts influence HR efficiency and outcome is poorly understood. We developed an assay to assess HR outcome by gene conversion (GC) and break-induced replication (BIR), and discovered that subtelomeric double-stranded breaks (DSBs) are preferentially repaired by BIR despite the presence of flanking homologous sequences.

View Article and Find Full Text PDF

Background: The spatiotemporal behavior of chromatin is an important control mechanism of genomic function. Studies in Saccharomyces cerevisiae have broadly contributed to demonstrate the functional importance of nuclear organization. Although in the wild yeast survival depends on their ability to withstand adverse conditions, most of these studies were conducted on cells undergoing exponential growth.

View Article and Find Full Text PDF

Fungal hydrophobins are secreted proteins that self-assemble at hydrophobic:hydrophilic interfaces. They are essential for a variety of processes in the fungal life cycle, including mediating interactions with surfaces and infection of hosts. The fungus Magnaporthe oryzae, the causative agent of rice blast, relies on the unique properties of hydrophobins to infect cultivated rice as well as over 50 different grass species.

View Article and Find Full Text PDF