Foveation can be defined as the organic action of directing the gaze towards a visual region of interest to acquire relevant information selectively. With the recent advent of event cameras, we believe that taking advantage of this visual neuroscience mechanism would greatly improve the efficiency of event data processing. Indeed, applying foveation to event data would allow to comprehend the visual scene while significantly reducing the amount of raw data to handle.
View Article and Find Full Text PDFThe precise timing of spikes emitted by neurons plays a crucial role in shaping the response of efferent biological neurons. This temporal dimension of neural activity holds significant importance in understanding information processing in neurobiology, especially for the performance of neuromorphic hardware, such as event-based cameras. Nonetheless, many artificial neural models disregard this critical temporal dimension of neural activity.
View Article and Find Full Text PDFWhy do neurons communicate through spikes? By definition, spikes are all-or-none neural events which occur at continuous times. In other words, spikes are on one side binary, existing or not without further details, and on the other, can occur at any asynchronous time, without the need for a centralized clock. This stands in stark contrast to the analog representation of values and the discretized timing classically used in digital processing and at the base of modern-day neural networks.
View Article and Find Full Text PDFThe statistics of real world images have been extensively investigated, but in virtually all cases using only low dynamic range image databases. The few studies that have considered high dynamic range (HDR) images have performed statistical analyses categorizing images as HDR according to their creation technique, and not to the actual dynamic range of the underlying scene. In this study we demonstrate, using a recent HDR dataset of natural images, that the statistics of the image as received at the camera sensor change dramatically with dynamic range, with particularly strong correlations with dynamic range being observed for the median, standard deviation, skewness, and kurtosis, while the one over frequency relationship for the power spectrum breaks down for images with a very high dynamic range, in practice making HDR images not scale invariant.
View Article and Find Full Text PDFThe ability to control finely the structure of materials remains a central issue in colloidal science. Due to their elastic properties, liquid crystals (LC) are increasingly used to organize matter at the micrometer scale in soft composites. Textures and shapes of LC droplets are currently controlled by the competition between elasticity and anchoring, hydrodynamic flows, or external fields.
View Article and Find Full Text PDF