During the osteoarthritis (OA) process, activation of immune systems, whether innate or adaptive, is strongly associated with low-grade systemic inflammation. This process is initiated and driven in the synovial membrane, especially by synovium cells, themselves previously activated by damage-associated molecular patterns (DAMPs) released during cartilage degradation. These fragments exert their biological activities through pattern recognition receptors (PRRs) that, as a consequence, induce the activation of signaling pathways and beyond the release of inflammatory mediators, the latter contributing to the vicious cycle between cartilage and synovial membrane.
View Article and Find Full Text PDFBackground: Proteomic studies of the secretome of skeletal muscle cells can help us understand the processes that govern the synthesis, systemic interactions and organization of skeletal muscle and identify proteins that are involved in muscular adaptations to exercise, ageing and degeneration. In this systematic review, we aimed to summarize recent mass-spectrometry based proteomics discoveries on the secretome of skeletal muscle cells in response to disease, exercise or metabolic stress.
Methods: A literature search was performed in the Medline/Ovid and Scopus electronic bibliographic databases.