Taking advantage of the competition between elasticity and capillarity has proven to be an efficient way to design structures by folding, bending, or assembling elastic objects in contact with liquid interfaces. Elastocapillary effects often occur at scales where gravity does not play an important role, such as in microfabrication processes. However, the influence of gravity can become significant at the desktop scale, which is relevant for numerous situations including model experiments used to provide a fundamental physics understanding, working at easily accessible scales.
View Article and Find Full Text PDFDue to their unique mechanical and thermal properties, polyurethane foams are widely used in multiple fields of applications, including cushioning, thermal insulation or biomedical engineering. However, the way polyurethane foams are usually manufactured - via chemical foaming - produces samples where blowing and gelling occur at the same time, resulting in a morphology control achieved by trial and error processes. Here, a novel strategy is introduced to build model homogeneous polyurethane foams of controlled density with millimetric bubbles from liquid templates.
View Article and Find Full Text PDFProcesses of water condensation and desublimation on solid surfaces are ubiquitous in nature and essential for various industrial applications, which are crucial for their performance. Despite their significance, these processes are not well understood due to the lack of methods that can provide insight at the nanolevel into the very first stages of phase transitions. Taking advantage of synchrotron grazing-incidence wide-angle X-ray scattering (GIWAXS) and environmental scanning electron microscopy (ESEM), two pathways of the frosting process from supersaturated vapors were studied in real time for substrates with different wettabilities ranging from highly hydrophilic to superhydrophobic.
View Article and Find Full Text PDFHypothesis: The morphology of ordinary macro-emulsions is controlled by their high interfacial energies, i.e., by capillarity, leading to well-known structural features which can be tuned only over a narrow range.
View Article and Find Full Text PDFThe ability of liquid interfaces to shape slender elastic structures provides powerful strategies to control the architecture of mechanical self assemblies. However, elastocapillarity-driven intelligent design remains unexplored in more complex architected liquids - such as foams. Here we propose a model system which combines an assembly of bubbles and a slender elastic structure.
View Article and Find Full Text PDF