Identification of the different intracellular pathways that control phosphorylation/dephosphorylation process of ionic channels represents an exciting alternative approach for studying the ionic mechanisms underlying neuronal pacemaker activity. In the central nervous system of the cockroach , octopaminergic neurons, called dorsal unpaired median (DUM; DUM neurons), generate spontaneous repetitive action potentials. Short-term cultured adult DUM neurons isolated from the terminal abdominal ganglion (TAG) of the nerve cord were used to study the regulation of a tetrodotoxin-sensitive low-voltage-activated (LVA) channel permeable to sodium and calcium (Na/Ca), under whole cell voltage- and current-clamp conditions.
View Article and Find Full Text PDFUsing whole cell patch-clamp technique and immunocytochemistry on adult dorsal unpaired median (DUM) neurons isolated from the cockroach Periplaneta americana CNS, we reported the characterization of a native mGluR, sharing pharmacological properties with vertebrate metabotropic glutamate receptor III (mGluRIII) that regulated voltage-dependent sodium current (I(Na)). The global I(Na) was dissociated by means of l-glutamate sensitivity, deactivation time constant, voltage dependence of activation and inactivation, recovery from inactivation, and intracellular regulation process. These two currents were respectively designated I(Na1) and I(Na2) for l-glutamate-sensitive and -insensitive sodium currents.
View Article and Find Full Text PDFAmong ionic currents underlying neuronal pacemaker activity, low-threshold-activated calcium currents contribute to setting the threshold for spike firing. In the insect central nervous system, dorsal unpaired median (DUM) neurons are capable of generating spontaneous electrical activity. It has previously been shown that two distinct (transient and maintained) low-voltage-activated (LVA) calcium currents are responsible for the generation of the pacemaker potential.
View Article and Find Full Text PDF