Publications by authors named "Antoine Dalet"

Acute itch can be generated by either chemical or mechanical stimuli, which activate separate pathways in the periphery and spinal cord. While substantial progress has been made in mapping the transmission pathway for chemical itch, the central pathway for mechanical itch remains obscure. Using complementary genetic and pharmacological manipulations, we show that excitatory neurons marked by the expression of the neuropeptide Y1 receptor (Y1 neurons) form an essential pathway in the dorsal spinal cord for the transmission of mechanical but not chemical itch.

View Article and Find Full Text PDF

Animals depend on sensory feedback from mechanosensory afferents for the dynamic control of movement. This sensory feedback needs to be selectively modulated in a task- and context-dependent manner. Here, we show that inhibitory interneurons (INs) expressing the RORβ orphan nuclear receptor gate sensory feedback to the spinal motor system during walking and are required for the production of a fluid locomotor rhythm.

View Article and Find Full Text PDF

Light mechanical stimulation of hairy skin can induce a form of itch known as mechanical itch. This itch sensation is normally suppressed by inputs from mechanoreceptors; however, in many forms of chronic itch, including alloknesis, this gating mechanism is lost. Here we demonstrate that a population of spinal inhibitory interneurons that are defined by the expression of neuropeptide Y::Cre (NPY::Cre) act to gate mechanical itch.

View Article and Find Full Text PDF

Sensory circuits in the dorsal spinal cord integrate and transmit multiple cutaneous sensory modalities including the sense of light touch. Here, we identify a population of excitatory interneurons (INs) in the dorsal horn that are important for transmitting innocuous light touch sensation. These neurons express the ROR alpha (RORα) nuclear orphan receptor and are selectively innervated by cutaneous low threshold mechanoreceptors (LTMs).

View Article and Find Full Text PDF

Inhibitory neurons in the spinal cord perform dedicated roles in processing somatosensory information and shaping motor behaviors that range from simple protective reflexes to more complex motor tasks such as locomotion, reaching and grasping. Recent efforts examining inhibition in the spinal cord have been directed toward determining how inhibitory cell types are specified and incorporated into the sensorimotor circuitry, identifying and characterizing molecularly defined cohorts of inhibitory neurons and interrogating the functional contribution these cells make to sensory processing and motor behaviors. Rapid progress is being made on all these fronts, driven in large part by molecular genetic and optogenetic approaches that are being creatively combined with neuroanatomical, electrophysiological and behavioral techniques.

View Article and Find Full Text PDF

Glutamate is the neurotransmitter released from hair cells. Its clearance from the synaptic cleft can shape neurotransmission and prevent excitotoxicity. This may be particularly important in the inner ear and in other sensory organs where there is a continually high rate of neurotransmitter release.

View Article and Find Full Text PDF