Unlabelled: Microorganisms with simplified genomes represent interesting cell chassis for systems and synthetic biology. However, genome reduction can lead to undesired traits, such as decreased growth rate and metabolic imbalances. To investigate the impact of genome reduction on strain DGF-298, a strain in which ~ 36% of the genome has been removed, we reconstructed a strain-specific metabolic model (AC1061), investigated the regulation of gene expression using iModulon-based transcriptome analysis, and performed adaptive laboratory evolution to let the strain correct potential imbalances that arose during its simplification.
View Article and Find Full Text PDFWe report the complete genome sequence and annotation of DGF-298, a genome-reduced strain with interesting properties for systems and synthetic biology. DGF-298 has a single circular chromosome of 2,991,126 bp and 2,831 genes, including 2,691 coding sequences, with a mean G + C content of ~51%.
View Article and Find Full Text PDFTransposon-insertion sequencing (TIS) methods couple high density transposon mutagenesis with next-generation sequencing and are commonly used to identify essential or important genes in bacteria. However, this approach can be work-intensive and sometimes expensive depending on the selected protocol. The difficulty to process a high number of samples in parallel using standard TIS protocols often restricts the number of replicates that can be performed and limits the deployment of this technique to large-scale projects studying gene essentiality in various strains or growth conditions.
View Article and Find Full Text PDF