The concept of resources or materials dissipation after their use in the technosphere has been increasingly considered in life-cycle based studies, applying Substance and Material Flow Analysis (SFA and MFA), Input-Output Analysis, and Life Cycle Assessment (LCA). However, there is currently no common understanding of what a dissipative flow is. This article first reviews 45 publications to describe the status of resource dissipation in life-cycle based studies, discussing how resource dissipation is usually defined, which temporal perspective is considered, which compartments of dissipation are distinguished, and which approaches (including the implementation of parameters) are considered to assess resource dissipation in a system.
View Article and Find Full Text PDFThe environmental impacts generated by household consumption are generally calculated through footprints, allocating the supply-chain impacts to the final consumers. This study compares the result of the Consumer Footprint indicator, aimed at assessing the impacts of household consumption in Europe, calculated with the two standard approaches usually implemented for footprint calculations: (i) a bottom-up approach, based on process-Life cycle assessment of a set of products and services representing household consumption, and (ii) a top-down approach, based on environmentally extended input-output tables (EXIOBASE 3). Environmental impacts are calculated considering 14 environmental impact categories out of the 16 included in the EF2017 impact assessment method.
View Article and Find Full Text PDFSustainable Consumption and Production is one of the leading principle towards reducing environmental impacts globally. This study aims at combining Environmentally-Extended Input-Output Analysis (using EXIOBASE 3) with up-to-date impact assessment models to quantify the environmental impacts induced by final consumption in the EU Member States in 2011. The environmental extensions are characterized in 14 environmental impact categories out of the 16 used in the Environmental Footprint life cycle impact assessment method.
View Article and Find Full Text PDFThis study aims at assessing the environmental performances of the French MSW incineration sector in a life cycle perspective, considering nine midpoint impact categories. It is the first application of the WILCI tool, dedicated to the LCA of MSW incineration in the French situation (Beylot et al., 2017).
View Article and Find Full Text PDFIn a context of waste management policies aimed at promoting waste prevention and recycling and, conversely, reducing waste landfilling, this study investigates how waste is generated and treated in a consumption perspective. A Waste Input-Output Analysis is implemented that considers 14 waste fractions and four waste management techniques. Input-Output Tables extended to wastes are initially compiled for the year 2008 considering France and five of its main import suppliers, and further completed with data on waste treatment.
View Article and Find Full Text PDFThe environmental performance of mechanical biological pre-treatment (MBT) of Municipal Solid Waste is quantified using Life Cycle Assessment (LCA), considering one of the 57 French plants currently in operation as a case study. The inventory is mostly based on plant-specific data, extrapolated from on-site measurements regarding mechanical and biological operations (including anaerobic digestion and composting of digestate). The combined treatment of 46,929 tonnes of residual Municipal Solid Waste and 12,158 tonnes of source-sorted biowaste (as treated in 2010 at the plant) generates 24,550 tonnes CO2-eq as an impact on climate change, 69,943kg SO2-eq on terrestrial acidification and 19,929kg NMVOC-eq on photochemical oxidant formation, in a life-cycle perspective.
View Article and Find Full Text PDFIncineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e.
View Article and Find Full Text PDFUnlabelled: GOAL AND SCOPE: The life cycle inventory of landfill emissions is a key point in Life Cycle Assessment (LCA) of waste management options and is highly subject to discussion. Result sensitivity to data inventory is accounted for through the implementation of scenarios that help examine how waste landfilling should be modeled in LCA.
Method: Four landfill biogas management options are environmentally evaluated in a Life Cycle Assessment perspective: (1) no biogas management (open dump), conventional landfill with (2) flaring, (3) combined heat and power (CHP) production in an internal combustion engine and (4) biogas upgrading for use as a fuel in buses.