Publications by authors named "Antje Wehner"

Time-resolved fluorescence on oligomers of the main light-harvesting complex from higher plants indicate that in vitro oligomerization leads to the formation of a weakly coupled inter-trimer chlorophyll-chlorophyll (Chl) exciton state which converts in tens of ps into a state which is spectrally broad and has a strongly far-red enhanced fluorescence spectrum. Both its lifetime and spectrum show striking similarity with a 400ps fluorescence component appearing in intact leaves of Arabidopsis when non-photochemical quenching (NPQ) is induced. The fluorescence components with high far-red/red ratio are thus a characteristic marker for NPQ conditions in vivo.

View Article and Find Full Text PDF

The conversion of violaxanthin to zeaxanthin is essentially required for the pH-regulated dissipation of excess light energy in the antenna of photosystem II. Violaxanthin is bound to each of the antenna proteins of both photosystems. Former studies with recombinant Lhcb1 and different Lhca proteins implied that each antenna protein contributes specifically to violaxanthin conversion related to protein-specific affinities of the different violaxanthin binding sites.

View Article and Find Full Text PDF

The conversion of violaxanthin (Vx) to zeaxanthin (Zx) in the de-epoxidation reaction of the xanthophyll cycle plays an important role in the protection of chloroplasts against photooxidative damage. Vx is bound to the antenna proteins of both photosystems. In photosystem II, the formation of Zx is essential for the pH-dependent dissipation of excess light energy as heat.

View Article and Find Full Text PDF

The enzyme violaxanthin de-epoxidase (VxDE) is localized in the thylakoid lumen and catalyzes the de-epoxidation of membrane-bound violaxanthin (Vx) to zeaxanthin. De-epoxidation from the opposite, stroma side of the membrane has been investigated in the npq1 mutant from Arabidopsis thaliana (L.) Heynh.

View Article and Find Full Text PDF