Publications by authors named "Antje Thien"

Autophagy is stimulated by stress conditions and needs to be precisely tuned to ensure cellular homeostasis and organismal development and health. The kinase mechanistic target of rapamycin (mTOR) forms the enzymatic core of the highly conserved mTOR complexes mTORC1 and mTORC2. mTORC1 is a key inhibitor of autophagy, yet the function of mTORC2 in autophagy is controversial.

View Article and Find Full Text PDF

The mechanistic target of rapamycin (mTOR) kinase is central to metabolism and growth, and has a conserved role in aging. mTOR functions in two complexes, mTORC1 and mTORC2. In diverse eukaryotes, inhibition of mTORC1 signaling increases lifespan.

View Article and Find Full Text PDF

The tuberous sclerosis proteins TSC1 and TSC2 are key integrators of growth factor signaling. They suppress cell growth and proliferation by acting in a heteromeric complex to inhibit the mammalian target of rapamycin complex 1 (mTORC1). In this study, we identify TSC1 as a component of the transforming growth factor β (TGF-β)-Smad2/3 pathway.

View Article and Find Full Text PDF

The kinase mammalian target of rapamycin (mTOR) exists in two multiprotein complexes (mTORC1 and mTORC2) and is a central regulator of growth and metabolism. Insulin activation of mTORC1, mediated by phosphoinositide 3-kinase (PI3K), Akt, and the inhibitory tuberous sclerosis complex 1/2 (TSC1-TSC2), initiates a negative feedback loop that ultimately inhibits PI3K. We present a data-driven dynamic insulin-mTOR network model that integrates the entire core network and used this model to investigate the less well understood mechanisms by which insulin regulates mTORC2.

View Article and Find Full Text PDF