Bioprospecting of the marine environment for drug development has gained much attention in recent years owing to its massive chemical and biological diversity. Drugs for the treatment of skin and soft tissue infections have become part of the search, mainly with respect to enlarging the number of available antibiotics, with a special focus on multidrug-resistant Gram-positive bacteria, being the major causative agents in this field. Marine resources offer novel natural products with distinct biological activities of pharmaceutical importance, having the chance to provide new chemical scaffolds and new modes of action.
View Article and Find Full Text PDFCarotenoids and squalene are important terpenes that are applied in a wide range of products in foods and cosmetics. Thraustochytrids might be used as alternative production organisms to improve production processes, but the taxon is rarely studied. A screening of 62 strains of thraustochytrids for their potential to produce carotenoids and squalene was performed.
View Article and Find Full Text PDFAstaxanthin derived from natural sources occurs in the form of various esters and stereomers, which complicates its quantitative and qualitative analysis. To simplify and standardize astaxanthin measurement with high precision, an enzymolysis-based astaxanthin quantification method was developed to hydrolyze astaxanthin esters and determine free astaxanthin in all its diastereomeric forms. Astaxanthin standards and differently processed Haematococcus pluvialis biomass were investigated.
View Article and Find Full Text PDFAstaxanthin derived from is a valuable metabolite applied in a wide range of products. Its extraction depends on a sophisticated series of downstream process steps, including harvesting, disruption, drying, and extraction, of which some are dependent on each other. To determine the processes that yield maximum astaxanthin recovery, bead milling, high-pressure homogenization, and no disruption of biomass were coupled with spray-drying, vacuum-drying, and freeze-drying in all possible combinations.
View Article and Find Full Text PDF(eelgrass) is a marine foundation species with key ecological roles in coastal habitats. Its bacterial microbiota has been well studied, but very little is known about its mycobiome. In this study, we have isolated and identified 13 fungal strains, dominated by species (10 strains), from the leaf and the root rhizosphere of Baltic .
View Article and Find Full Text PDFThe fungi associated with marine algae are prolific sources of metabolites with high chemical diversity and bioactivity. In this study, we investigated culture-dependent fungal communities associated with the Baltic seaweed Altogether, 55 epiphytic and endophytic fungi were isolated and identified. Twenty-six strains were selected for a small-scale One-Strain-Many-Compounds (OSMAC)-based fermentation in four media under solid and liquid culture regimes.
View Article and Find Full Text PDFFungi represent a rich source of bioactive metabolites and some are marketed as alternatives to synthetic agrochemicals against plant pathogens. However, the culturability of fungal strains in artificial laboratory conditions is still limited and the standard mono-cultures do not reflect their full spectrum chemical diversity. Phytopathogenic fungi and bacteria have successfully been used in the activation of cryptic biosynthetic pathways to promote the production of new secondary metabolites in co-culture experiments.
View Article and Find Full Text PDFThe blue mussel Mytilus is a popular food source with high economical value. Species of the M. edulis complex (M.
View Article and Find Full Text PDFMarine fungi have attracted attention in recent years due to increased appreciation of their functional role in ecosystems and as important sources of new natural products. The concomitant development of various "omic" technologies has boosted fungal research in the fields of biodiversity, physiological ecology and natural product biosynthesis. Each of these research areas has its own research agenda, scientific language and quality standards, which have so far hindered an interdisciplinary exchange.
View Article and Find Full Text PDFAs part of an international research project, the marine fungal strain collection of the Helmholtz Centre for Ocean Research (GEOMAR) research centre was analysed for secondary metabolite profiles associated with anticancer activity. Strain MF458 was identified as , by internal transcribed spacer region (ITS) sequence similarity and its natural product production profile. By using five different media in two conditions and two time points, we were able to identify eight natural products produced by MF458.
View Article and Find Full Text PDFThe glycogen-synthase-kinase 3 (GSK-3) is an important target in drug discovery. This enzyme is involved in the signaling pathways of type 2 diabetes, neurological disorders, cancer, and other diseases. Therefore, inhibitors of GSK-3 are promising drug candidates for the treatment of a broad range of diseases.
View Article and Find Full Text PDFFilamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply.
View Article and Find Full Text PDFStrains originally affiliated to the genera Scopulariopsis and Microascus were compared regarding the scopularide production in order to investigate their ability to produce the cyclodepsipeptides and select the best suited candidate for subsequent optimisation processes. Phylogenetic calculations using available sequences of the genera Scopulariopsis and Microascus revealed that most of the sequences clustered within two closely related groups, comprising mainly Scopulariopsis/Microascus brevicaulis and Microascus sp., respectively.
View Article and Find Full Text PDFThe marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus.
View Article and Find Full Text PDFMolecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection.
View Article and Find Full Text PDFAn unusual polyketide with a new carbon skeleton, lindgomycin (1), and the recently described ascosetin (2) were extracted from mycelia and culture broth of different Lindgomycetaceae strains, which were isolated from a sponge of the Kiel Fjord in the Baltic Sea (Germany) and from the Antarctic. Their structures were established by spectroscopic means. In the new polyketide, two distinct domains, a bicyclic hydrocarbon and a tetramic acid, are connected by a bridging carbonyl.
View Article and Find Full Text PDFNatural compounds from marine fungi are an excellent source for the discovery and development of new drug leads. The distinct activity profiles of the two cyclodepsipeptides scopularide A and B against cancer cell lines set their marine producer strain Scopulariopsis brevicaulis LF580 into the focus of the EU project MARINE FUNGI. One of the main goals was the development of a sustainable biotechnological production process for these compounds.
View Article and Find Full Text PDFBackground: Marine organisms produce many novel compounds with useful biological activity, but are currently underexploited. Considerable research has been invested in the study of compounds from marine bacteria, and several groups have now recognised that marine fungi also produce an interesting range of compounds. During product discovery, these compounds are often produced only in non-agitated culture conditions, which are unfortunately not well suited for scaling up.
View Article and Find Full Text PDFThis study covers the isolation, testing, and identification of natural products with anticancer properties. Secondary metabolites were isolated from fungal strains originating from a variety of marine habitats. Strain culture protocols were optimized with respect to growth media composition and fermentation conditions.
View Article and Find Full Text PDFEight streptophenazines (A-H) have been identified so far as products of Streptomyces strain HB202, which was isolated from the sponge Halichondria panicea from the Baltic Sea. The variation of bioactivities based on small structural changes initiated further studies on new derivatives. Three new streptophenazines (I-K) were identified after fermentation in the present study.
View Article and Find Full Text PDFBioactive compounds were detected in crude extracts of the fungus, Calcarisporium sp. KF525, which was isolated from German Wadden Sea water samples. Purification of the metabolites from the extracts yielded the five known polyesters, 15G256α, α-2, β, β-2 and π (1-5), and five new derivatives thereof, named calcarides A-E (6-10).
View Article and Find Full Text PDFThe isolation and structure elucidation of the novel calcaripeptides A (1), B (2), and C (3) and studies on their biosynthetic origin are described. The calcaripeptides were identified from Calcarisporium sp. strain KF525, which was isolated from the German Wadden Sea.
View Article and Find Full Text PDF