Epigenetic remodeling is emerging as a critical process for several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Genetics alone fails to explain the etiology of ALS, the investigation of the epigenome might therefore provide novel insights into the molecular mechanisms of the disease. In this study, we interrogated the epigenetic landscape in peripheral blood mononuclear cells (PBMCs) of familial ALS (fALS) patients with either chromosome 9 open reading frame 72 (C9orf72) or superoxide dismutase 1 (SOD1) mutation and aimed to identify key epigenetic footprints of the disease.
View Article and Find Full Text PDFALS is a fatal motor neuron disease that displays a broad variety of phenotypes ranging from early fatal courses to slowly progressing and rather benign courses. Such divergence can also be seen in genetic ALS cases with varying phenotypes bearing specific mutations, suggesting epigenetic mechanisms like DNA methylation act as disease modifiers. However, the epigenotype dictated by, in addition to other mechanisms, DNA methylation is also strongly influenced by the individual's genotype.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal motoneuron disease with a monogenic cause in approximately 10% of cases. However, familial clustering of disease without inheritance in a Mendelian manner and the broad range of phenotypes suggest the presence of epigenetic mechanisms. Hence, we performed an epigenome-wide association study on sporadic, symptomatic and presymptomatic familial ALS cases with mutations in C9ORF72 and FUS and healthy controls studying DNA methylation in blood cells.
View Article and Find Full Text PDFObjectives: Due to upcoming gene-specific therapy approaches for ALS patients, understanding familial and sporadic ALS genetics is becoming increasingly important. In this study, we wanted to investigate underlying genetic causes for an SALS patient.
Methods: We performed ALS gene panel sequencing and subsequent segregation analysis in the family.
Mutations in FUS and TBK1 often cause aggressive early-onset amyotrophic lateral sclerosis (ALS) or a late-onset ALS and/or frontotemporal dementia (FTD) phenotype, respectively. Co-occurrence of mutations in two or more Mendelian ALS/FTD genes has been repeatedly reported. However, little is known how two pathogenic ALS/FTD mutations in the same patient interact to shape the final phenotype.
View Article and Find Full Text PDFObjective: The clinical manifestation of amyotrophic lateral sclerosis (ALS) is characterized by motor neuron degeneration, whereas frontotemporal dementia (FTD) patients show alterations of behavior and cognition. Both share repeat expansions in C9orf72 as the most prevalent genetic cause. Before disease-defining symptoms onset, structural and functional changes at cortical level may emerge in C9orf72 carriers.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
November 2020
Background: A mutation in constitute a cross-link between amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD). At clinical manifestation, both patient groups may present with either cognitive impairment of predominantly behaviour or language (in FTD) or motor dysfunctions (in ALS).
Methods: In total, 36 non-symptomatic mutation carriers from ALS or FTD families were examined, including 21 subjects with and 15 with mutations.
Objective: To investigate the role of neuroinflammation in asymptomatic and symptomatic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) mutation carriers.
Methods: The neuroinflammatory markers chitotriosidase 1 (CHIT1), YKL-40 and glial fibrillary acidic protein (GFAP) were measured in cerebrospinal fluid (CSF) and blood samples from asymptomatic and symptomatic ALS/FTD mutation carriers, sporadic cases and controls by ELISA.
Results: CSF levels of CHIT1, YKL-40 and GFAP were unaffected in asymptomatic mutation carriers (n=16).
J Neurol Neurosurg Psychiatry
August 2018
Objectives: Recent advances in amyotrophic lateral sclerosis (ALS) genetics have revealed that mutations in any of more than 25 genes can cause ALS, mostly as an autosomal-dominant Mendelian trait. Detailed knowledge about the genetic architecture of ALS in a specific population will be important for genetic counselling but also for genotype-specific therapeutic interventions.
Methods: Here we combined fragment length analysis, repeat-primed PCR, Southern blotting, Sanger sequencing and whole exome sequencing to obtain a comprehensive profile of genetic variants in ALS disease genes in 301 German pedigrees with familial ALS.
Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelopmental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of amyotrophic lateral sclerosis.
View Article and Find Full Text PDFNeurofilaments are elevated in the cerebrospinal fluid (CSF) and serum of amyotrophic lateral sclerosis (ALS) patients. However, timing of this increase is unknown. To characterize the premanifest disease phase, we performed a cross-sectional study on asymptomatic (n = 12) and symptomatic (n = 64) ALS mutation carriers and family controls (n = 19).
View Article and Find Full Text PDF