Publications by authors named "Antje Diestel"

Objective: Insufficient myocardial protection is still a considerable cause for in-hospital mortality in children. The purpose of our study was to investigate underlying the basic mechanisms of cardioplegic cardioprotection during hypothermic and normothermic ischemia in a cardiomyocyte cell culture model.

Methods: We cooled cardiomyocytes to 20°C for 20min; during this time, cardiac arrest was simulated by oxidative damage with 2mM H₂O₂ and cardioplegic solution, followed by rewarming to 37°C.

View Article and Find Full Text PDF

The purpose of our study was to investigate underlying basic mechanisms of hypothermia-induced cardioprotection during oxidative stress in a cardiomyocyte cell culture model. For hypothermic treatment we cooled H9c2 cardiomyocytes to 20°C, maintained 20min at 20°C during which short-term oxidative damage was inflicted with 2mM H(2)O(2,) followed by rewarming to 37°C. Later on, we analyzed lactate dehydrogenase (LDH), caspase-3 cleavage, reactive oxygen species (ROS), mitochondrial activity, intracellular ATP production, cytoprotective signal molecules as well as DNA damage.

View Article and Find Full Text PDF

Besides the well-understood DNA damage response via establishment of G(2) checkpoint arrest, novel studies focus on the recovery from arrest by checkpoint override to monitor cell cycle re-entry. The aim of this study was to investigate the role of Chk1 in the recovery from G(2) checkpoint arrest in HCT116 (human colorectal cancer) wt, p53(-/-) and p21(-/-) cell lines following H(2) O(2) treatment. Firstly, DNA damage caused G(2) checkpoint activation via Chk1.

View Article and Find Full Text PDF

Despite the widespread interest in the clinical applications of hypothermia, the cellular mechanisms of hypothermia-induced neuroprotection have not yet been clearly understood. Therefore, the aim of this study was to elucidate the cellular effects of clinically relevant hypothermia and rewarming on the morphological and functional characteristics of microglia. Microglial cells were exposed to a dynamic cooling and rewarming protocol.

View Article and Find Full Text PDF

Systemic or brain-selective hypothermia is a well-established method for neuroprotection after brain trauma. There is increasing evidence that hypothermia exerts beneficial effects on the brain and may also support regenerative responses after brain damage. Here, we have investigated whether hypothermia influences neurite outgrowth in vitro via modulation of the post-injury cytokine milieu.

View Article and Find Full Text PDF

To protect immature organ systems during corrective cardiac surgery, patients are cooled to a minimal temperature of 17 degrees C during cardiopulmonary bypass (CPB). However hypothermic CPB triggers the whole body inflammatory response and results in unwanted prolonged inflammation. The present study was designed to clarify the hypothermia and rewarming induced mechanisms and examine interventional pharmacological strategies that could prevent prolonged inflammation.

View Article and Find Full Text PDF

Background: Hypothermia is used to preserve organs for transplantation and is the oldest method to protect organs during complex pediatric cardiac surgery. Loss of tissue function and tissue edema are common complications in children undergoing corrective cardiac surgery and heart transplantation. The present study was designed to examine the effects of methylprednisolone and tacrolimus on endothelial cell function and morphology after deep hypothermia and rewarming.

View Article and Find Full Text PDF

Hypothermia is a standard method for organ protection during cardiac surgery in children. However, the mechanisms of hypothermia-induced cell protection have not yet been clearly established. Therefore, the aim of our studies was to elucidate molecular effects of clinically relevant mild and deep hypothermia on endothelial cells.

View Article and Find Full Text PDF

There are few reports describing the role of p53-dependent gene repression in apoptotic cell death. To identify such apoptosis-associated p53 target genes, we used the pro-oxidant plant-derived drug thymoquinone and compared p53+/+ and p53-/- colon cancer cells HCT116. The p53 wild-type (wt) status correlated with more pronounced DNA damage and higher apoptosis after thymoquinone treatment.

View Article and Find Full Text PDF

We have shown that thymoquinone (TQ) is a potent antitumor agent in human colorectal cancer cells. In this study, we evaluated TQ's therapeutic potential in two different mice colon cancer models [1,2-dimethyl hydrazine (DMH) and xenografts]. We also examined TQ effects on the growth of C26 mouse colorectal carcinoma spheroids and assessed tumor invasion in vitro.

View Article and Find Full Text PDF

Helicobacter pylori are bacteria that colonize the stomach persistently, which confers risk of serious diseases, including peptic ulceration and gastric neoplasia. Aberrant expression of cell cycle control proteins has been demonstrated in H. pylori infected gastric epithelial cells, suggesting that perturbation of the cell cycle plays a role in the pathogenesis of various H.

View Article and Find Full Text PDF

Hypothermic perfusion is a standard method for neuroprotection during cardiac surgery in children. However, the cellular responses underlying these mechanisms have not been clearly elucidated. In the present study we demonstrated that the inflammatory response of stimulated microglial cells is significantly reduced after moderate hypothermia.

View Article and Find Full Text PDF

We have recently shown that thymoquinone (TQ) is an antineoplastic drug that induces p53-dependent apoptosis in human colon cancer cells. This study evaluated the antiproliferative and pro-apoptotic effects of TQ in two human osteosarcoma cell lines with different p53 mutation status. TQ decreased cell survival dose-dependently and, more significantly, in p53-null MG63 cells (IC(50) = 17 muM) than in p53-mutant MNNG/HOS cells (IC(50) = 38 muM).

View Article and Find Full Text PDF

After traumatic brain lesion, microglial cells are rapidly activated, migrate toward the sites of injury, and cause secondary damage that accounts for most of the loss of brain function. In the present study, we have characterized a new macrophage/microglia activation factor (MAF). Using the monocytic cell line U937, we were able to demonstrate that MAF is upregulated after TPA-induced differentiation into macrophages.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic demyelinating disease in which it has only recently been suggested that damage to neuronal structures plays a key role. Here, we uncovered a link between the release of lipid breakdown products, found in the brain and cerebrospinal fluid (CSF) of MS patients as well as in experimental autoimmune encephalomyelitis, and neuronal damage mediated by microglial activation. The concentrations of the breakdown product 7-ketocholesterol detected in the CSF of MS patients were capable of inducing neuronal damage via the activation and migration of microglial cells in living brain tissue.

View Article and Find Full Text PDF