Circulating tumor DNA (ctDNA) is the cornerstone of liquid biopsy diagnostics, revealing clinically relevant genomic aberrations from blood of cancer patients. Genomic analysis of single circulating tumor cells (CTCs) could provide additional insights into intra-patient heterogeneity, but it requires whole-genome amplification (WGA) of DNA, which might introduce bias. Here, we describe a novel approach based on mass spectrometry for mutation detection from individual CTCs not requiring WGA and complex bioinformatics pipelines.
View Article and Find Full Text PDFBackground: An increased incidence of thrombotic complications associated with an increased mortality rate has been observed under immune checkpoint inhibition (ICI). Recent investigations on the coagulation pathways have highlighted the direct role of key coagulatory proteins and platelets in cancer initiation, angiogenesis and progression. The aim of this study was to evaluate the prognostic value of von Willebrand factor (vWF) and its regulatory enzyme a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), D-dimers and platelets in a cohort of patients with metastatic melanoma receiving ICI.
View Article and Find Full Text PDFIn cancer metastasis, single circulating tumor cells (CTCs) in the blood and disseminated tumor cells (DTCs) in the bone marrow mediate cancer metastasis. Because suitable biomarker proteins are lacking, CTCs and DTCs with mesenchymal attributes are difficult to isolate from the bulk of normal blood cells. To establish a procedure allowing the isolation of such cells, we analyzed the cell line BC-M1 established from DTCs in the bone marrow of a breast cancer patient by stable isotope labeling by amino acids in cell culture (SILAC) and mass spectrometry.
View Article and Find Full Text PDFLung cancer is the most often diagnosed cancer and the main cause of cancer deaths in the world compared with other tumor entities. To date, the only screening method for high-risk lung cancer patients is low-dosed computed tomography which still suffers from high false-positive rates and overdiagnosis. Therefore, there is an obvious need to identify biomarkers for the detection of lung cancer that could be used to guide the use of low-dosed computed tomography or other imaging procedures.
View Article and Find Full Text PDFBackground: Despite recent progress in liquid biopsy technologies, early blood-based detection of breast cancer is still a challenge.
Methods: We analyzed secretion of the protein cellular communication network factor 1 (CCN1, formerly cysteine-rich angiogenic inducer 61) in breast cancer cell lines by an enzyme-linked immunosorbent assay (ELISA). Soluble CCN1 in the plasma (2.
(1) Background: the early detection of cancer cells in the blood or bone marrow of breast cancer patients improves the understanding of metastasis. Disseminating tumor cells in the bone marrow with a pronounced manifestation of mesenchymal markers (mDTC) are difficult to detect by epithelial markers, but they are relevant in the initiation of metastasis. (2) Methods: the breast cancer mDTC cell line BC-M1 was analyzed by mass spectrometry, which revealed high levels of the protein-cysteine-rich angiogenic inducer 61 (Cyr61).
View Article and Find Full Text PDFBackground: Detection of asbestos-associated diseases like asbestosis or mesothelioma is still challenging. We sought to improve the diagnosis of benign asbestos-associated disease (BAAD) by detection of the protein cysteine-rich angiogenic inducer 61 (Cyr61) in human plasma.
Methods: Plasma Cyr61 was quantified using an enzyme-linked immunosorbent assay.
Background: Solid epithelial tumors like breast cancer are the most frequent malignancy in women. Circulating tumor cells (CTCs) are frequently released from hypoxic areas into the blood, where CTCs face elevated oxygen concentrations. This reoxygenation might challenge the use of CTCs for liquid biopsy.
View Article and Find Full Text PDFModern technologies enable detection and characterization of circulating tumor cells (CTC) in peripheral blood samples. Thus, CTC have attracted interest as markers for therapeutic response in breast cancer. First studies have incorporated CTC analyses to guide therapeutic interventions and stratification of breast cancer patients.
View Article and Find Full Text PDFDisseminated tumor cells (DTC), which share mesenchymal and epithelial properties, are considered to be metastasis-initiating cells in breast cancer. However, the mechanisms supporting DTC survival are poorly understood. DTC extravasation into the bone marrow may be encouraged by low oxygen concentrations that trigger metabolic and molecular alterations contributing to DTC survival.
View Article and Find Full Text PDFHER2 signalling by heterodimerisation with EGFR and HER3 in breast cancer is associated with worst outcome of the afflicted patients, which is attributed not only to the aggressiveness of such tumours but also to therapy resistance. Thus, in the present study we investigated the role of EGFR, HER2 and HER3 lateral signalling in cell migration by applying the MDA-MB-468-HER2 (MDA-HER2) breast cancer cell line, representing a valid model system. Knockdown of HER3 expression by siRNA resulted in decreased phosphorylated AKT (pAKT) levels, abrogated epidermal growth factor (EGF)-mediated PLC-γ1 activation and a diminished EGF-induced migratory activity, depicting the interplay of EGF receptor (EGFR)/HER2/PLC-γ1 and HER2/HER3/PI3K signalling in mediating the migration of EGFR/HER2/HER3-expressing breast cancer cells.
View Article and Find Full Text PDFPurpose: Circulating tumor cells (CTC) might function as early markers for breast cancer metastasis or monitoring therapy efficacy. Enrichment and identification of CTCs are based on epithelial markers that might be modulated during epithelial-mesenchymal transition. Little is known about the expression of keratins in CTCs and whether all CTCs can be detected with antibodies directed against a limited panel of keratins.
View Article and Find Full Text PDFPurpose: A preliminary study performed on a small cohort of multifocal prostate cancer (PCa) detected BRCA1 allelic imbalances among circulating tumor cells (CTC). The present analysis was aimed to elucidate the biological and clinical roles of BRCA1 losses in metastatic spread and tumor progression in PCa patients.
Experimental Design: To map molecular progression in PCa outgrowth, we used fluorescence in situ hybridization analysis of primary tumors and lymph node sections, and CTCs from peripheral blood.
Metastases arise from disseminated tumor cells (DTC) that colonize secondary organs. However, DTC survival strategies to start metastatic outgrowth are unclear. The hostile (hypoxic, hypoglycemic) microenvironmental conditions of the bone marrow serve as an ideal model environment for investigation of DTC survival strategies under environmental stress.
View Article and Find Full Text PDFBackground: Increased transcription of oncogenes like the epidermal growth factor receptor (EGFR) is frequently caused by amplification of the whole gene or at least of regulatory sequences. Aim of this study was to pinpoint mechanistic parameters occurring during egfr copy number gains leading to a stable EGFR overexpression and high sensitivity to extracellular signalling. A deeper understanding of those marker events might improve early diagnosis of cancer in suspect lesions, early detection of cancer progression and the prediction of egfr targeted therapies.
View Article and Find Full Text PDF