Interactions between magnetic fields advected by matter play a fundamental role in the Universe at a diverse range of scales. A crucial role these interactions play is in making turbulent fields highly anisotropic, leading to observed ordered fields. These in turn, are important evolutionary factors for all the systems within and around.
View Article and Find Full Text PDFLaser-driven proton accelerators are relevant candidates for many applications such as material science or medicine. Today, there are multi-hundred-TW table-top laser systems that can generate relativistic peak intensities >1018 W/cm2 and routinely reach proton energies in the MeV range. However, for most desired applications, there is still a need to optimize the quality and stability of the laser-generated proton beam.
View Article and Find Full Text PDFThe propagation and energy coupling of intense laser beams in plasmas are critical issues in inertial confinement fusion. Applying magnetic fields to such a setup has been shown to enhance fuel confinement and heating. Here we report on experimental measurements demonstrating improved transmission and increased smoothing of a high-power laser beam propagating in a magnetized underdense plasma.
View Article and Find Full Text PDFParticle and radiation sources are widely employed in manifold applications. In the last decades, the upcoming of versatile, energetic, high-brilliance laser-based sources, as produced by intense laser-matter interactions, has introduced utilization of these sources in diverse areas, given their potential to complement or even outperform existing techniques. In this paper, we show that the interaction of an intense laser with a solid target produces a versatile, non-destructive, fast analysis technique that allows to switch from laser-driven PIXE (Particle-Induced X-ray Emission) to laser-driven XRF (X-ray Fluorescence) within single laser shots, by simply changing the atomic number of the interaction target.
View Article and Find Full Text PDFTime-Of-Flight (TOF) methods are very effective to detect particles accelerated in laser-plasma interactions, but they show significant limitations when used in experiments with high energy and intensity lasers, where both high-energy ions and remarkable levels of ElectroMagnetic Pulses (EMPs) in the radiofrequency-microwave range are generated. Here we describe a novel advanced diagnostic method for the characterization of protons accelerated by intense matter interactions with high-energy and high-intensity ultra-short laser pulses up to the femtosecond and even future attosecond range. The method employs a stacked diamond detector structure and the TOF technique, featuring high sensitivity, high resolution, high radiation hardness and high signal-to-noise ratio in environments heavily affected by remarkable EMP fields.
View Article and Find Full Text PDFLaser-driven proton acceleration is a growing field of interest in the high-power laser community. One of the big challenges related to the most routinely used laser-driven ion acceleration mechanism, Target-Normal Sheath Acceleration (TNSA), is to enhance the laser-to-proton energy transfer such as to maximize the proton kinetic energy and number. A way to achieve this is using nanostructured target surfaces in the laser-matter interaction.
View Article and Find Full Text PDFWe report on the cross-calibration of Thomson Parabola (TP) and Time-of-Flight (TOF) detectors as particle diagnostics, implemented on the most recent setup of the ALLS 100 TW laser-driven ion acceleration beamline. The Microchannel Plate (MCP) used for particle detection in the TP spectrometer has been calibrated in intensity on the tandem linear accelerator at the Université de Montréal. The experimental data points of the scaling factor were obtained by performing a pixel cluster analysis of single proton impacts on the MCP.
View Article and Find Full Text PDFLaser-driven proton acceleration, as produced during the interaction of a high-intensity (I > 1 × 10 W/cm), short pulse (<1 ps) laser with a solid target, is a prosperous field of endeavor for manifold applications in different domains, including astrophysics, biomedicine and materials science. These emerging applications benefit from the unique features of the laser-accelerated particles such as short duration, intense flux and energy versatility, which allow obtaining unprecedented temperature and pressure conditions. In this paper, we show that laser-driven protons are perfectly suited for producing, in a single sub-ns laser pulse, metallic nanocrystals with tunable diameter ranging from tens to hundreds of nm and very high precision.
View Article and Find Full Text PDFWe present a Target Positioning Interferometer (TPI), a system that uses variations of the wavefront curvature to position solid reflective surfaces with submicrometric precision. The TPI is a Michelson interferometer into which a lens is inserted in the target arm and the mirror of the reference arm is slightly tilted. The TPI configuration presented in this work allows us to position the surface of a reflective target on a beam focus within an uncertainty of 350 nm (2σ) in a subsecond timeframe, using a lens with a numerical aperture of NA = 0.
View Article and Find Full Text PDFIn this work, we calibrate the newly developed EBT-XD radiochromic films (RCFs) manufactured by Gafchromic using protons in the energy range of 4-10 MeV. Irradiation was performed on the 2 × 6 MV tandem linear accelerator located at the Université de Montréal. The RCFs were digitized using an Epson Perfection V700 flatbed scanner using both the red-green-blue and grayscale channels.
View Article and Find Full Text PDFWe introduce the use of an In-Air Plasma-Induced Luminescence (In-Air-PIL) spectroscopy as an alternative to classical chemical and crystallographic methods used in materials science. The In-Air-PIL is evaluated on a case study investigating the effect of light aging on the darkening of five pristine yellow pigments commonly used in artworks. We show that the darkening is not associated to changes in the chemical composition, but to a loss in crystallinity, indicating an amorphization process of the pigments induced and catalyzed by the light irradiation.
View Article and Find Full Text PDFLaser-driven proton acceleration is a field of growing interest, in particular for its numerous applications, including in the field of materials science. A benefit of these laser-based particle sources is their potential for a relative compactness in addition to some characteristics at the source that differ from those of conventional, radio-frequency based proton sources. These features include, e.
View Article and Find Full Text PDFThe original version of the Supplementary Information associated with this Article contained an error in Supplementary Figure 3 in which all panels, with the exception of the bottom-left 'Ti' panel, were blank. The HTML has been updated to include a corrected version of the Supplementary Information.
View Article and Find Full Text PDFLaser-accelerated protons, generated by irradiating a solid target with a short, energetic laser pulse at high intensity (I > 10 W·cm), represent a complementary if not outperforming source compared to conventional accelerators, due to their intrinsic features, such as high beam charge and short bunch duration. However, the broadband energy spectrum of these proton sources is a bottleneck that precludes their use in applications requiring a more reduced energy spread. Consequently, in recent times strong effort has been put to overcome these limits and to develop laser-driven proton beamlines with low energy spread.
View Article and Find Full Text PDFLaser-driven particle acceleration, obtained by irradiation of a solid target using an ultra-intense (I > 10 W/cm) short-pulse (duration <1 ps) laser, is a growing field of interest, in particular for its manifold potential applications in different domains. Here, we provide experimental evidence that laser-generated particles, in particular protons, can be used for stress testing materials and are particularly suited for identifying materials to be used in harsh conditions. We show that these laser-generated protons can produce, in a very short time scale, a strong mechanical and thermal damage, that, given the short irradiation time, does not allow for recovery of the material.
View Article and Find Full Text PDFA new type of proton acceleration stemming from large-scale gradients, low-density targets, irradiated by an intense near-infrared laser is observed. The produced protons are characterized by high-energies (with a broad spectrum), are emitted in a very directional manner, and the process is associated to relaxed laser (no need for high-contrast) and target (no need for ultra-thin or expensive targets) constraints. As such, this process appears quite effective compared to the standard and commonly used Target Normal Sheath Acceleration technique (TNSA), or more exploratory mechanisms like Radiation Pressure Acceleration (RPA).
View Article and Find Full Text PDFWe have investigated proton acceleration in the forward direction from a near-critical density hydrogen gas jet target irradiated by a high intensity (10 W/cm), short-pulse (5 ps) laser with wavelength of 1.054 μm. We observed the signature of the Collisionless Shock Acceleration mechanism, namely quasi-monoenergetic proton beams with small divergence in addition to the more commonly observed electron-sheath driven proton acceleration.
View Article and Find Full Text PDFWe present a method for the synthesis of micro-crystals and micro-structured surfaces using laser-accelerated protons. In this method, a solid surface material having a low melting temperature is irradiated with very-short laser-generated protons, provoking in the ablation process thermodynamic conditions that are between the boiling and the critical point. The intense and very quick proton energy deposition (in the ns range) induces an explosive boiling and produces microcrystals that nucleate in a plasma plume composed by ions and atoms detached from the laser-irradiated surface.
View Article and Find Full Text PDFIn this paper we introduce a laser-plasma driven method for the production of carbon based nanomaterials and in particular bi- and few-layers of Graphene. This is obtained by using laser-plasma exfoliation of amorphous Graphite in a liquid solution, employing a laser with energy in the order of 0.5 J/mm.
View Article and Find Full Text PDFThis paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies.
View Article and Find Full Text PDFIn the last decades, nanomaterials and nanotechnologies have become fundamental and irreplaceable in many fields of science and technology. When used in applications, their properties depend on many factors such as size, shape, internal structure and composition. For this, exact knowledge of their structural features is essential when developing fabrication technologies and searching for new types of nanostructures or nanoparticles with specific properties.
View Article and Find Full Text PDFRadiochromic films (RCF) are commonly used in dosimetry for a wide range of radiation sources (electrons, protons, and photons) for medical, industrial, and scientific applications. They are multi-layered, which includes plastic substrate layers and sensitive layers that incorporate a radiation-sensitive dye. Quantitative dose can be retrieved by digitizing the film, provided that a prior calibration exists.
View Article and Find Full Text PDFThe ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes.
View Article and Find Full Text PDFThe production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ∼3 ns duration neutron pulse with 10(4) n/MeV/sr/shot at 0.
View Article and Find Full Text PDFUltra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g.
View Article and Find Full Text PDF