Publications by authors named "Anthony Wilkinson"

The production of human body odor is the result of the action of commensal skin bacteria, including Staphylococcus hominis, acting to biotransform odorless apocrine gland secretions into volatile chemicals like thioalcohols such as 3-methyl-3-sulphanylhexan-1-ol (3M3SH). As the secreted odor precursor Cys-Gly-3M3SH contains a dipeptide, yet the final enzyme in the biotransformation pathway only functions on Cys-3M3SH, we sought to identify the remaining step in this human-adapted biochemical pathway using a novel coupled enzyme assay. Purification of this activity from S.

View Article and Find Full Text PDF

In Escherichia coli and Salmonella typhimurium, cysteine biosynthesis requires the products of 20 or more cys genes co-ordinately regulated by CysB. Under conditions of sulphur limitation and in the presence of the inducer, N-acetylserine, CysB binds to cys promoters and activates the transcription of the downstream coding sequences. CysB is a homotetramer, comprising an N-terminal DNA binding domain (DBD) and a C-terminal effector binding domain (EBD).

View Article and Find Full Text PDF

In eukaryotic cells, molecular fate and cellular responses are shaped by multicomponent enzyme systems which reversibly attach ubiquitin and ubiquitin-like modifiers to target proteins. The extent of the ubiquitin proteasome system in Leishmania mexicana and its importance for parasite survival has recently been established through deletion mutagenesis and life-cycle phenotyping studies. The ubiquitin conjugating E2 enzyme UBC2, and the E2 enzyme variant UEV1, with which it forms a stable complex in vitro, were shown to be essential for the differentiation of promastigote parasites to the infectious amastigote form.

View Article and Find Full Text PDF

YejABEF is an ATP-binding cassette transporter that is implicated in the sensitivity of to anti-microbial peptides, the best-characterized example being microcin C, a peptide-nucleotide antibiotic that targets aspartyl-tRNA synthetase. Here the structure of the extracellular solute binding protein, YejA, has been determined, revealing an oligopeptide-binding protein fold enclosing a ligand-binding pocket larger than those of other peptide-binding proteins of known structure. Prominent electron density in this cavity defines an undecapeptide sequence LGEPRYAFNFN, an observation that is confirmed by mass spectrometry.

View Article and Find Full Text PDF

Leishmaniases are a collection of neglected tropical diseases caused by kinetoplastid parasites in the genus . Current chemotherapies are severely limited, and the need for new antileishmanials is of pressing international importance. Bromodomains are epigenetic reader domains that have shown promising therapeutic potential for cancer therapy and may also present an attractive target to treat parasitic diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Microbes like the bacterium sp. ANA-3 have adapted to use lignocellulosic biomass, facing specific challenges in breaking down and utilizing these materials as food.
  • The study reveals that GafA, a substrate binding protein in ANA-3, selectively binds to l-arabinofuranose, an uncommon sugar form found in lignocellulosic biomass, hinting at the microbe's specialized feeding mechanism.
  • Understanding this sugar-binding process could lead to advancements in industrial biotechnology by improving how we utilize plant biomass efficiently.
View Article and Find Full Text PDF

Peptide transporters play important nutritional and cell signalling roles in which are pronounced during stationary phase adaptations and development. Three high-affinity ATP-binding cassette (ABC) family transporters are involved in peptide uptake - the oligopeptide permease (Opp), another peptide permease (App) and a less well-characterized dipeptide permease (Dpp). Here we report crystal structures of the extracellular substrate binding proteins, OppA and DppE, which serve the Opp and Dpp systems, respectively.

View Article and Find Full Text PDF

Ubiquitination is a post-translational modification conserved across eukaryotic species. It contributes to a variety of regulatory pathways, including proteasomal degradation, DNA repair, and cellular differentiation. The ubiquitination of substrate proteins typically requires three ubiquitination enzymes: a ubiquitin-activating E1, a ubiquitin-conjugating E2, and an E3 ubiquitin ligase.

View Article and Find Full Text PDF

In eukaryotic cells, reversible attachment of ubiquitin and ubiquitin-like modifiers (Ubls) to specific target proteins is conducted by multicomponent systems whose collective actions control protein fate and cell behaviour in precise but complex ways. In trypanosomatids, attachment of ubiquitin and Ubls to target proteins regulates the cell cycle, endocytosis, protein sorting and degradation, autophagy and various aspects of infection and stress responses. The extent of these systems in trypanosomatids has been surveyed in recent reports, while in Leishmania mexicana, essential roles have been defined for many ubiquitin-system genes in deletion mutagenesis and life-cycle phenotyping campaigns.

View Article and Find Full Text PDF

Leishmania are unicellular parasites that cause human and animal diseases. Like other kinetoplastids, they possess large transcriptional start regions (TSRs) which are defined by histone variants and histone lysine acetylation. Cellular interpretation of these chromatin marks is not well understood.

View Article and Find Full Text PDF

The leishmaniases are infectious diseases caused by a number of species of obligate intracellular protozoa of the genus with disease manifesting as cutaneous, mucocutaneous and visceral forms. Despite being endemic in more than 80 countries and its being the cause of high morbidity and mortality, leishmaniasis remains a neglected tropical disease. Chemotherapy is the frontline treatment, but drugs in current use suffer from toxic side effects, difficulties in administration and extended treatment times - moreover, resistance is emerging.

View Article and Find Full Text PDF

In , protein O-mannosyl transferase (Pmt)-mediated protein O-glycosylation has an important role in cell envelope physiology. In defective Pmt leads to increased susceptibility to cell wall-targeting antibiotics, including vancomycin and β-lactams, and resistance to phage ϕC31. The aim of this study was to gain a deeper understanding of the structure and function of Pmt.

View Article and Find Full Text PDF

EARLY FLOWERING3 sub-nuclear localization responds to changes in ambient temperature

View Article and Find Full Text PDF

Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. 2 E1 ubiquitin-activating (E1), 13 E2 ubiquitin-conjugating (E2), 79 E3 ubiquitin ligase (E3) and 20 deubiquitinating cysteine peptidase (DUB) genes can be identified in the Leishmania mexicana genome but, currently, little is known about the role of E1, E2 and E3 enzymes in this parasite. Bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed numerous loss-of-fitness phenotypes in promastigote to amastigote differentiation and mammalian infection.

View Article and Find Full Text PDF

Body odour is a characteristic trait of Homo sapiens, however its role in human behaviour and evolution is poorly understood. Remarkably, body odour is linked to the presence of a few species of commensal microbes. Herein we discover a bacterial enzyme, limited to odour-forming staphylococci that are able to cleave odourless precursors of thioalcohols, the most pungent components of body odour.

View Article and Find Full Text PDF
Article Synopsis
  • This study employs advanced imaging techniques to investigate the role of the SpoIIE protein in the development of bacteria during asymmetric cell division and sporulation.
  • Using single-molecule optical proteomics, researchers discovered that SpoIIE forms tetramers and clusters, with its quantity increasing as the bacteria progress in sporulation, impacting gene expression and protein activity.
  • The findings highlight the complexity of SpoIIE's functions and suggest that its organization allows for versatile roles in cellular processes, illustrating the benefits of live cell tracking for understanding biological mechanisms.
View Article and Find Full Text PDF

The leishmaniases, caused by species of protozoan parasites, are neglected tropical diseases with millions of cases worldwide. Current therapeutic approaches are limited by toxicity, resistance, and cost. -Myristoyltransferase (NMT), an enzyme ubiquitous and essential in all eukaryotes, has been validated via genetic and pharmacological methods as a promising anti-leishmanial target.

View Article and Find Full Text PDF

CotE is a coat protein that is present in the spores of Clostridium difficile, an obligate anaerobic bacterium and a pathogen that is a leading cause of antibiotic-associated diarrhoea in hospital patients. Spores serve as the agents of disease transmission, and CotE has been implicated in their attachment to the gut epithelium and subsequent colonization of the host. CotE consists of an N-terminal peroxiredoxin domain and a C-terminal chitinase domain.

View Article and Find Full Text PDF

Peptides play an important signalling role in Bacillus subtilis, where their uptake by one of two ABC-type oligopeptide transporters, Opp and App, is required for efficient sporulation. Homologues of these transporters in Clostridium difficile have been characterized, but their role, and hence that of peptides, in regulating sporulation in this organism is less clear. Here, the oligopeptide-binding receptor proteins for these transporters, CdAppA and CdOppA, have been purified and partially characterized, and the crystal structure of CdAppA has been determined in an open unliganded form.

View Article and Find Full Text PDF

Toxin synthesis and endospore formation are two of the most critical factors that determine the outcome of infection by Clostridioides difficile. The two major toxins, TcdA and TcdB, are the principal factors causing damage to the host. Spores are the infectious form of C.

View Article and Find Full Text PDF

Short, cost-effective teaching activities are a useful way of providing an integrated view on biological processes. Here we describe a brief, hands-on workshop that allows pre-university students to explore their understanding of a neurological pathway from its chemical bases to phenotype. The workshop effectively introduces the students to data collection and analysis in an enjoyable way and at an appropriate level, determined by an end of session feedback survey.

View Article and Find Full Text PDF

The plant circadian clock allows the synchronization of internal physiological responses to match the predicted environment. HSP90.2 is a molecular chaperone that has been previously described as required for the proper functioning of the oscillator under both ambient and warm temperatures.

View Article and Find Full Text PDF

The bioconjugation of proteins with small molecules has proved an invaluable strategy for probing and perturbing biological mechanisms. The general use of chemical methods for protein functionalisation can be limited however by the requirement for complicated reaction partners to be present in large excess, and harsh conditions which are incompatible with many protein scaffolds. Herein we describe a site-selective organocatalyst-mediated protein aldol ligation (OPAL) that affords stable carbon-carbon linked bioconjugates at neutral pH.

View Article and Find Full Text PDF

Rhinoviruses (RVs) are the pathogens most often responsible for the common cold, and are a frequent cause of exacerbations in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Here we report the discovery of IMP-1088, a picomolar dual inhibitor of the human N-myristoyltransferases NMT1 and NMT2, and use it to demonstrate that pharmacological inhibition of host-cell N-myristoylation rapidly and completely prevents rhinoviral replication without inducing cytotoxicity. The identification of cooperative binding between weak-binding fragments led to rapid inhibitor optimization through fragment reconstruction, structure-guided fragment linking and conformational control over linker geometry.

View Article and Find Full Text PDF

Clostridium difficile infection (CDI) is an important hospital-acquired infection resulting from the germination of spores in the intestine as a consequence of antibiotic-mediated dysbiosis of the gut microbiota. Key to this is CotE, a protein displayed on the spore surface and carrying 2 functional elements, an N-terminal peroxiredoxin and a C-terminal chitinase domain. Using isogenic mutants, we show in vitro and ex vivo that CotE enables binding of spores to mucus by direct interaction with mucin and contributes to its degradation.

View Article and Find Full Text PDF