With the ultimate goal of developing a more representative animal model of Alzheimer's disease (AD), two female amyloid-β-(Aβ) precursor protein-transgenic (APPtg) rhesus monkeys were generated by lentiviral transduction of the gene into rhesus oocytes, followed by fertilization and embryo transfer. The -transgene included the AD-associated Swedish K670N/M671L and Indiana V717F mutations () regulated by the human polyubiquitin-C promoter. Overexpression of was confirmed in lymphocytes and brain tissue.
View Article and Find Full Text PDFJ Assist Reprod Genet
October 2022
Trinucleotide repeats (TNRs) are dispersed throughout the human genome. About 20 loci are related to human diseases, such as Huntington's disease (HD). A larger TNR instability is predominantly observed in the paternal germ cells in some TNR disorders.
View Article and Find Full Text PDFHuntington's Disease (HD) is an autosomal dominant disease that results in severe neurodegeneration with no cure. HD is caused by the expanded CAG trinucleotide repeat (TNR) on the Huntingtin gene (). Although the somatic and germline expansion of the CAG repeats has been well-documented, the underlying mechanisms had not been fully delineated.
View Article and Find Full Text PDFPurpose: The expansion of CAG (glutamine; Q) trinucleotide repeats (TNRs) predominantly occurs through male lineage in Huntington's disease (HD). As a result, offspring will have larger CAG repeats compared to their fathers, which causes an earlier onset of the disease called genetic anticipation. This study aims to develop a novel in vitro model to replicate CAG repeat instability in early spermatogenesis and demonstrate the biological process of genetic anticipation by using the HD stem cell model for the first time.
View Article and Find Full Text PDFAmitriptyline is a tricyclic antidepressant commonly prescribed in humans for pain and sleep disorders and in non-human primates for self-injurious behaviors. Here, we report a clinical case on the teratogenic effect of maternal-fetal amitriptyline exposure.
View Article and Find Full Text PDFFused in sarcoma (FUS) is a RNA/DNA protein involved in multiple nuclear and cytoplasmic functions including transcription, splicing, mRNA trafficking, and stress granule formation. To accomplish these many functions, FUS must shuttle between cellular compartments in a highly regulated manner. When shuttling is disrupted, FUS abnormally accumulates into cytoplasmic inclusions that can be toxic.
View Article and Find Full Text PDFSalient sensory environments experienced by a parental generation can exert intergenerational influences on offspring. While these data provide an exciting new perspective on biological inheritance, questions remain about causes and consequences of intergenerational influences of salient sensory experience. We previously showed that exposing male mice to a salient olfactory experience, like olfactory fear conditioning, resulted in offspring demonstrating a sensitivity to the odor used to condition the paternal generation and possessing enhanced neuroanatomical representation for that odor.
View Article and Find Full Text PDFBackground: Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion, resulting in a mutant huntingtin protein. While it is now clear that astrocytes are affected by HD and significantly contribute to neuronal dysfunction and pathogenesis, the alterations in the transcriptional and epigenetic profiles in HD astrocytes have yet to be characterized. Here, we examine global transcription and chromatin accessibility dynamics during in vitro astrocyte differentiation in a transgenic non-human primate model of HD.
View Article and Find Full Text PDFThe expanded CAG repeat results in somatic mosaicism and genetic anticipation in Huntington's disease (HD). Here we report a longitudinal study examining CAG repeat instability in lymphocytes and sperm of three HD monkeys throughout their whole life-span that encompass the prodromal to symptomatic stages of HD. We demonstrate a progressive increase in CAG repeat length in lymphocytes and sperm as the animals aged.
View Article and Find Full Text PDFThe epigenetic information present in mammalian gametes and whether it is transmitted to the progeny are relatively unknown. We find that many promoters in mouse sperm are occupied by RNA polymerase II (Pol II) and Mediator. The same promoters are accessible in GV and MII oocytes and preimplantation embryos.
View Article and Find Full Text PDFHuntington's disease (HD) is a dominantly inherited monogenetic disorder characterized by motor and cognitive dysfunction due to neurodegeneration. The disease is caused by the polyglutamine (polyQ) expansion at the 5' terminal of the exon 1 of the huntingtin () gene, , which results in the accumulation of mutant HTT (mHTT) aggregates in neurons and cell death. The monogenetic cause and the loss of specific neural cell population make HD a suitable candidate for stem cell and gene therapy.
View Article and Find Full Text PDFHuntington's disease (HD) is a devastating monogenic, dominant, hereditary, neurodegenerative disease. HD is caused by the expansion of CAG repeats in exon 1 of the huntingtin (HTT) gene, IT15, resulting in an expanded polyglutamine (polyQ) residue in the N-terminus of the HTT protein. HD is characterized by the accumulation of mutant HTT (mHTT) in neural and somatic cells.
View Article and Find Full Text PDFHuntington's disease is an autosomal dominant neurodegenerative disorder associated with progressive motor and cognitive impairments, and the expansion of a cysteine-adenine-guanine trinucleotide (polyglutamine) repeats in exon one of the human huntingtin gene. The pathology of the disease is characterized by a profound degeneration of striatal GABAergic projection neurons with relative sparing of interneurons accompanied with astrogliosis. Here, we describe the striatal pathology in two genotypically different transgenic HD monkeys that exhibit degrees of disease progression that resembled those seen in juvenile- (rHD1) and adult-onset (rHD7) HD.
View Article and Find Full Text PDFUnlabelled: Per- and polyfluoroalkyl substances (PFASs) represent a highly ubiquitous group of synthetic chemicals used in products ranging from water and oil repellents and lubricants to firefighting foam. These substances can enter and accumulate in multiple tissue matrices in up to 100% of people assessed. Though animal models strongly identify these compounds as male reproductive toxicants, with exposed rodents experiencing declines in sperm count, alterations in hormones, and DNA damage in spermatids, among other adverse outcomes, human studies report conflicting conclusions as to the reproductive toxicity of these chemicals.
View Article and Find Full Text PDFSperm counts have rapidly declined in Western males over the past four decades. This rapid decline remains largely unexplained, but exposure to environmental toxicants provides one potential explanation for this decline. Flame retardants are highly prevalent and persistent in the environment, but many have not been assessed for their effects on human spermatogenesis.
View Article and Find Full Text PDFThe neurodegeneration associated with Huntington disease (HD) leads to the onset of motor and cognitive impairment and their advancement with increased age in humans. In children at risk for HD, body measurement growth abnormalities include a reduction in BMI, weight, height, and head circumference. The transgenic HD NHP model was first reported in 2008, and progressive decline in cognitive behaviors and motor impairment have been reported.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
March 2018
Huntington's disease (HD) is a complex neurodegenerative disorder that has no cure. Although treatments can often be given to relieve symptoms, the neuropathology associated with HD cannot be stopped or reversed. HD is characterized by degeneration of the striatum and associated pathways that leads to impairment in motor and cognitive functions as well as psychiatric disturbances.
View Article and Find Full Text PDFTransgenic Huntington's disease monkey (HD monkey) model provides great opportunity for studying disease progression that could lead to new insight for developing biomarker, early intervention and novel therapeutics. Whole brain white matter integrity of HD-monkeys was examined longitudinally from 6 to 48 months using diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS). Progressive developmental white matter alterations in HD monkeys were widespread and were observed not only in fiber bundles connecting cortical areas to the striatum (e.
View Article and Find Full Text PDFHuntington's disease (HD) is a neurodegenerative disease caused by an expansion of CAG trinucleotide repeat (polyglutamine [polyQ]) in the huntingtin ( HTT) gene, which leads to the formation of mutant HTT (mHTT) protein aggregates. In the nervous system, an accumulation of mHTT protein results in glutamate-mediated excitotoxicity, proteosome instability, and apoptosis. Although HD pathogenesis has been extensively studied, effective treatment of HD has yet to be developed.
View Article and Find Full Text PDFHuntington's disease (HD) is an inherited neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) tract that leads to motor, cognitive and psychiatric impairment. Currently there is no cure for HD. A transgenic HD nonhuman primate (HD-NHP) model was developed with progressive development of clinical and pathological features similar to human HD, which suggested the potential preclinical application of the HD-NHP model.
View Article and Find Full Text PDFAlthough the most notable clinical symptoms of Huntington's disease (HD) are motor disturbances and brain atrophy, other symptoms include cognitive dysfunction, emotional and hormonal dysregulation. Emotional dysregulation (irritability, anger/aggression, and anxiety) and increased inflammation are early emerging symptoms which can be detected decades before the onset of motor symptoms in HD patients. Despite the advances in understanding the genetic causes of HD there is still no cure or preventative treatment.
View Article and Find Full Text PDFOne of the roadblocks to developing effective therapeutics for Huntington disease (HD) is the lack of animal models that develop progressive clinical traits comparable to those seen in patients. Here we report a longitudinal study that encompasses cognitive and motor assessment, and neuroimaging of a group of transgenic HD and control monkeys from infancy to adulthood. Along with progressive cognitive and motor impairment, neuroimaging revealed a progressive reduction in striatal volume.
View Article and Find Full Text PDFTransgenic nonhuman primate models are an increasingly popular model for neurologic and neurodegenerative disease because their brain functions and neural anatomies closely resemble those of humans. Transgenic Huntington's disease monkeys (HD monkeys) developed clinical features similar to those seen in HD patients, making the monkeys suitable for a preclinical study of HD. However, until HD monkey colonies can be readily expanded, their use in preclinical studies will be limited.
View Article and Find Full Text PDFHuntington's disease (HD) is a dominant neurodegenerative disorder caused by the expansion of glutamine residues in the N-terminal region of the huntingtin (HTT) protein. The disease results in progressive neuronal loss, leading to motor, cognitive, and psychiatric impairment. Here, we report the establishment of neural progenitor cell (NPC) lines derived from induced pluripotent stem cells (iPSCs) of transgenic HD monkeys.
View Article and Find Full Text PDFPurpose: The ability to longitudinally monitor cell grafts and assess their condition is critical for the clinical translation of stem cell therapy in regenerative medicine. Developing an inducible genetic magnetic resonance imaging (MRI) reporter will enable non-invasive and longitudinal monitoring of stem cell grafts in vivo.
Methods: MagA, a bacterial gene involved in the formation of iron oxide nanocrystals, was genetically modified for in vivo monitoring of cell grafts by MRI.