Publications by authors named "Anthony W Meek"

Transcranial direct current stimulation (tDCS) has been shown to modify excitability of the primary motor cortex (M1) and influence online motor learning. However, research on the effects of tDCS on motor learning has focused predominantly on simplified motor tasks. The purpose of the present study was to investigate whether anodal stimulation of M1 over a single session of practice influences online learning of a relatively complex rhythmic timing video game.

View Article and Find Full Text PDF

Motor skill learning can cause structural and functional changes in the primary motor cortex (M1) leading to cortical plasticity that can be associated with the performance change during the motor skill that is practiced. Similarly, anodal transcranial direct current stimulation (a-tDCS) has been shown to facilitate and enhance plasticity in M1, causing even greater motor skill improvement. By using a fine motor task (O'Connor Tweezer Dexterity Task) in combination with a-tDCS we theorized that a-tDCS could increase the speed of skill acquisition.

View Article and Find Full Text PDF

Background: Limb circumference predicts the pressure needed for complete occlusion. However, that relationship is inconsistent at moderate pressures typical of effective blood flow restriction (BFR) training. The purpose of this study was to investigate the influence of subject factors on BFR at low restriction pressures in the arm.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) has been shown to enhance or block online learning of motor skills, depending on the current direction. However, most research on the use of tDCS has been limited to the study of relatively simple motor tasks. The purpose of the present study was to examine the influence of anodal (a-tDCS) and cathodal (c-tDCS) direct current stimulation on the online learning during a single session of dart throwing.

View Article and Find Full Text PDF

Cortical representations expand during skilled motor learning. We studied a unique model of motor learning with cellular phone texting, where the thumbs are used exclusively to interact with the device and the prominence of use can be seen where 3200 text messages are exchanged a month in the 18-24 age demographic. The purpose of the present study was to examine the motor cortex representation and input-output (IO) recruitment curves of the abductor pollicis brevis (APB) muscle of the thumb and the ADM muscle with transcranial magnetic stimulation (TMS), relative to individuals' texting abilities and short-term texting practice.

View Article and Find Full Text PDF