Publications by authors named "Anthony Vial"

Deciphering breast cancer treatment resistance remains hindered by the lack of models that can successfully capture the four-dimensional dynamics of the tumor microenvironment. Here, we show that microextrusion bioprinting can reproducibly generate distinct cancer and stromal compartments integrating cells relevant to human pathology. Our findings unveil the functional maturation of this millimeter-sized model, showcasing the development of a hypoxic cancer core and an increased surface proliferation.

View Article and Find Full Text PDF

The virulence of , a multi-drug resistant pathogen, notably depends on the expression of the phenol soluble modulins α3 (PSMα3) peptides, able to self-assemble into amyloid-like cross-α fibrils. Despite remarkable advances evidencing the crucial, yet insufficient, role of fibrils in PSMα3 cytotoxic activities towards host cells, the relationship between its molecular structures, assembly propensities, and modes of action remains an open intriguing problem. In this study, combining atomic force microscopy (AFM) imaging and infrared spectroscopy, we first demonstrated that the charge provided by the N-terminal capping of PSMα3 alters its interactions with model membranes of controlled lipid composition without compromising its fibrillation kinetics or morphology.

View Article and Find Full Text PDF

In this study, we designed aptamer-based self-assemblies for the delivery of quinine. Two different architectures were designed by hybridizing quinine binding aptamers and aptamers targeting lactate dehydrogenase (PfLDH): nanotrains and nanoflowers. Nanotrains consisted in controlled assembly of quinine binding aptamers through base-pairing linkers.

View Article and Find Full Text PDF

Nuclear pore complexes (NPCs) are the only gateways between the nucleus and cytoplasm in eukaryotic cells. They restrict free diffusion to molecules below 5 nm while facilitating the active transport of selected cargoes, sometimes as large as the pore itself. This versatility implies an important pore plasticity.

View Article and Find Full Text PDF

This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).

View Article and Find Full Text PDF

Septins are ubiquitous cytoskeletal filaments that interact with the inner plasma membrane and are essential for cell division in eukaryotes. In cellular contexts, septins are often localized at micrometric Gaussian curvatures, where they assemble onto ring-like structures. The behavior of budding yeast septins depends on their specific interaction with inositol phospholipids, enriched at the inner leaflet of the plasma membrane.

View Article and Find Full Text PDF

Many transmembrane receptors have a desensitized state, in which they are unable to respond to external stimuli. The family of microbial rhodopsin proteins includes one such group of receptors, whose inactive or dark-adapted (DA) state is established in the prolonged absence of light. Here, we present high-resolution crystal structures of the ground (light-adapted) and DA states of Archaerhodopsin-3 (AR3), solved to 1.

View Article and Find Full Text PDF

Supported lipid bilayers represent a very attractive way to mimic biological membranes, especially to investigate molecular mechanisms associated with the lateral segregation of membrane components. Observation of these model membranes with high-speed atomic force microscopy (HS-AFM) allows the capture of both topography and dynamics of membrane components, with a spatial resolution in the nanometer range and image capture time of less than 1 s. In this context, we have developed new protocols adapted for HS-AFM to form supported lipid bilayers on small mica disks using the vesicle fusion or Langmuir-Blodgett methods.

View Article and Find Full Text PDF

In plants, MADS domain transcription factors act as central regulators of diverse developmental pathways. In Arabidopsis thaliana, one of the most central members of this family is SEPALLATA3 (SEP3), which is involved in many aspects of plant reproduction, including floral meristem and floral organ development. SEP3 has been shown to form homo and heterooligomeric complexes with other MADS domain transcription factors through its intervening (I) and keratin-like (K) domains.

View Article and Find Full Text PDF