Summary: We introduce WatFinder, a tool designed to identify and visualize protein-water interactions (water bridges, water-mediated associations, or water channels, fluxes, and clusters) relevant to protein stability, dynamics, and function. WatFinder is integrated into ProDy, a Python API broadly used for structure-based prediction of protein dynamics. WatFinder provides a suite of functions for generating raw data as well as outputs from statistical analyses.
View Article and Find Full Text PDFAn ongoing challenge to chemists is the analysis of pathways and kinetics for chemical reactions in solution, including transient structures between the reactants and products that are difficult to resolve using laboratory experiments. Here, we enabled direct molecular dynamics simulations of a textbook series of chemical reactions on the hundreds of ns to μs time scale using the weighted ensemble (WE) path sampling strategy with hybrid quantum mechanical/molecular mechanical (QM/MM) models. We focused on azide-clock reactions involving addition of an azide anion to each of three long-lived trityl cations in an acetonitrile-water solvent mixture.
View Article and Find Full Text PDFJ Chem Inf Model
December 2023
The pathways by which a molecular process transitions to a target state are highly sought-after as direct views of a transition mechanism. While great strides have been made in the physics-based simulation of such pathways, the analysis of these pathways can be a major challenge due to their diversity and variable lengths. Here, we present the LPATH Python tool, which implements a semiautomated method for linguistics-assisted clustering of pathways into distinct classes (or routes).
View Article and Find Full Text PDFThe pathways by which a molecular process transitions to a target state are highly sought-after as direct views of a transition mechanism. While great strides have been made in the physics-based simulation of such pathways, the analysis of these pathways can be a major challenge due to their diversity and variable lengths. Here we present the LPATH Python tool, which implements a semi-automated method for linguistics-assisted clustering of pathways into distinct classes (or routes).
View Article and Find Full Text PDFLiving J Comput Mol Sci
January 2023
The weighted ensemble (WE) strategy has been demonstrated to be highly efficient in generating pathways and rate constants for rare events such as protein folding and protein binding using atomistic molecular dynamics simulations. Here we present two sets of tutorials instructing users in the best practices for preparing, carrying out, and analyzing WE simulations for various applications using the WESTPA software. The first set of more basic tutorials describes a range of simulation types, from a molecular association process in explicit solvent to more complex processes such as host-guest association, peptide conformational sampling, and protein folding.
View Article and Find Full Text PDFPassive permeability of a drug-like molecule is a critical property assayed early in a drug discovery campaign that informs a medicinal chemist how well a compound can traverse biological membranes, such as gastrointestinal epithelial or restrictive organ barriers, so it can perform a specific therapeutic function. However, the challenge that remains is the development of a method, experimental or computational, which can both determine the permeation rate and provide mechanistic insights into the transport process to help with the rational design of any given molecule. Typically, one of the following three methods are used to measure the membrane permeability: (1) experimental permeation assays acting on either artificial or natural membranes; (2) quantitative structure-permeability relationship models that rely on experimental values of permeability or related pharmacokinetic properties of a range of molecules to infer those for new molecules; and (3) estimation of permeability from the Smoluchowski equation, where free energy and diffusion profiles along the membrane normal are taken as input from large-scale molecular dynamics simulations.
View Article and Find Full Text PDFThe weighted ensemble (WE) family of methods is one of several statistical mechanics-based path sampling strategies that can provide estimates of key observables (rate constants and pathways) using a fraction of the time required by direct simulation methods such as molecular dynamics or discrete-state stochastic algorithms. WE methods oversee numerous parallel trajectories using intermittent overhead operations at fixed time intervals, enabling facile interoperability with any dynamics engine. Here, we report on the major upgrades to the WESTPA software package, an open-source, high-performance framework that implements both basic and recently developed WE methods.
View Article and Find Full Text PDFInt J High Perform Comput Appl
September 2021
We develop a generalizable AI-driven workflow that leverages heterogeneous HPC resources to explore the time-dependent dynamics of molecular systems. We use this workflow to investigate the mechanisms of infectivity of the SARS-CoV-2 spike protein, the main viral infection machinery. Our workflow enables more efficient investigation of spike dynamics in a variety of complex environments, including within a complete SARS-CoV-2 viral envelope simulation, which contains 305 million atoms and shows strong scaling on ORNL Summit using NAMD.
View Article and Find Full Text PDFSARS-CoV-2 infection is controlled by the opening of the spike protein receptor binding domain (RBD), which transitions from a glycan-shielded 'down' to an exposed 'up' state to bind the human angiotensin-converting enzyme 2 receptor and infect cells. While snapshots of the 'up' and 'down' states have been obtained by cryo-electron microscopy and cryo-electron tomagraphy, details of the RBD-opening transition evade experimental characterization. Here over 130 µs of weighted ensemble simulations of the fully glycosylated spike ectodomain allow us to characterize more than 300 continuous, kinetically unbiased RBD-opening pathways.
View Article and Find Full Text PDFDesigning proteins that can switch between active (ON) and inactive (OFF) conformations in response to signals such as ligand binding and incident light has been a tantalizing endeavor in protein engineering for over a decade. While such designs have yielded novel biosensors, therapeutic agents, and smart biomaterials, the response times (times for switching ON and OFF) of many switches have been too slow to be of practical use. Among the defining properties of such switches, the kinetics of switching has been the most challenging to optimize.
View Article and Find Full Text PDFWe present the Rate from Event Durations (RED) scheme, a new scheme that more efficiently calculates rate constants using the weighted ensemble path sampling strategy. This scheme enables rate-constant estimation from shorter trajectories by incorporating the probability distribution of event durations, or barrier-crossing times, from a simulation. We have applied the RED scheme to weighted ensemble simulations of a variety of rare-event processes that range in complexity: residue-level simulations of protein conformational switching, atomistic simulations of Na/Cl association in explicit solvent, and atomistic simulations of protein-protein association in explicit solvent.
View Article and Find Full Text PDFSARS-CoV-2 infection is controlled by the opening of the spike protein receptor binding domain (RBD), which transitions from a glycan-shielded "down" to an exposed "up" state in order to bind the human ACE2 receptor and infect cells. While snapshots of the "up" and "down" states have been obtained by cryoEM and cryoET, details of the RBD opening transition evade experimental characterization. Here, over 130 μs of weighted ensemble (WE) simulations of the fully glycosylated spike ectodomain allow us to characterize more than 300 continuous, kinetically unbiased RBD opening pathways.
View Article and Find Full Text PDFA promising approach for simulating rare events with rigorous kinetics is the weighted ensemble path sampling strategy. One challenge of this strategy is the division of configurational space into bins for sampling. Here we present a minimal adaptive binning (MAB) scheme for the automated, adaptive placement of bins along a progress coordinate within the framework of the weighted ensemble strategy.
View Article and Find Full Text PDFWe present a new force field, AMBER ff15ipq-m, for simulations of protein mimetics in applications from therapeutics to biomaterials. This force field is an expansion of the AMBER ff15ipq force field that was developed for canonical proteins and enables the modeling of four classes of artificial backbone units that are commonly used alongside natural α residues in blended or "heterogeneous" backbones: chirality-reversed D-α-residues, the C-methylated α-residue Aib, homologated β-residues (β) bearing proteinogenic side chains, and two cyclic β residues (β; APC and ACPC). The ff15ipq-m force field includes 472 unique atomic charges and 148 unique torsion terms.
View Article and Find Full Text PDFLiving J Comput Mol Sci
October 2019
The weighted ensemble (WE) strategy has been demonstrated to be highly efficient in generating pathways and rate constants for rare events such as protein folding and protein binding using atomistic molecular dynamics simulations. Here we present five tutorials instructing users in the best practices for preparing, carrying out, and analyzing WE simulations for various applications using the WESTPA software. Users are expected to already have significant experience with running standard molecular dynamics simulations using the underlying dynamics engine of interest (e.
View Article and Find Full Text PDF