Streptococcus pyogenes (Sp) Cas9 has been widely utilized to edit genomes across diverse species. To achieve high efficiency and specificity as a gene editing enzyme, Sp Cas9 undergoes a series of sequential conformational changes during substrate binding and catalysis. Here, we employed single molecule FRET techniques to investigate the effect of different KCl concentrations on conformational dynamics of Sp Cas9 in the presence or absence of a single-guide RNA (sgRNA).
View Article and Find Full Text PDFAlthough severe coronavirus disease 2019 (COVID-19) and hospitalization associated with COVID-19 are generally preventable among healthy vaccine recipients, patients with immunosuppression have poor immunogenic responses to COVID-19 vaccines and remain at high risk of infection with SARS-CoV-2 and hospitalization. In addition, monoclonal antibody therapy is limited by the emergence of novel SARS-CoV-2 variants that have serially escaped neutralization. In this context, there is interest in understanding the clinical benefit associated with COVID-19 convalescent plasma collected from persons who have been both naturally infected with SARS-CoV-2 and vaccinated against SARS-CoV-2 ("vax-plasma").
View Article and Find Full Text PDFDuchenne muscular dystrophy is an X-linked disorder typically caused by out-of-frame mutations in the gene. Most of these are deletions of one or more exons, which can theoretically be corrected through CRISPR-Cas9-mediated knockin. Homology-independent targeted integration is a mechanism for achieving such a knockin without reliance on homology-directed repair pathways, which are inactive in muscle.
View Article and Find Full Text PDF• The hemodynamic changes of surgery demand close monitoring in patients with LVADs. • During intraoperative TEE, a bubble study may help to diagnose a PFO. • TEE monitoring is optimal for patients with LVADs undergoing noncardiac procedures.
View Article and Find Full Text PDFPhosphorylation of Inhibitor of κB (IκB) proteins by IκB Kinase β (IKKβ) leads to IκB degradation and subsequent activation of nuclear factor κB transcription factors. Of particular interest is the IKKβ-catalyzed phosphorylation of IκBα residues Ser and Ser within a conserved destruction box motif. To investigate the catalytic mechanism of IKKβ, we performed pre-steady-state kinetic analysis of the phosphorylation of IκBα protein substrates catalyzed by constitutively active, human IKKβ.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a progressive muscle disease caused by loss of dystrophin protein, encoded by the DMD gene. DMD manifests early in childhood as difficulty walking, progresses to loss of ambulation by the teens, and leads to death in early adulthood. Adeno-associated virus-vectorized gene therapies to restore dystrophin protein expression using gene replacement or antisense oligonucleotide-mediated pre-mRNA splicing modulation have emerged, making great strides in uncovering barriers to gene therapies for DMD and other genetic diseases.
View Article and Find Full Text PDFMany successful anti-viral and anti-cancer drugs are nucleoside analogs, which disrupt RNA and/or DNA synthesis. Here, we present liver-specific prodrugs of the chemotherapy drug gemcitabine (2',2'-difluorodeoxycytidine) for the treatment of hepatitis C virus (HCV) infection and hepatocellular carcinoma. The prodrugs were synthesized by introducing aromatic functional moieties to the cytosine 4-NH group of gemcitabine via amide bonds.
View Article and Find Full Text PDFInterest in CRISPR/Cas9 remains high level as new applications of the revolutionary gene-editing tool continue to emerge. While key structural and biochemical findings have illuminated major steps in the enzymatic mechanism of Cas9, several important details remain unidentified or poorly characterized that may contribute to known functional limitations. Here we describe the foundation of research that has led to a fundamental understanding of Cas9 and address mechanistic uncertainties that restrict continued development of this gene-editing platform, including specificity for the protospacer adjacent motif, propensity for off-target binding and cleavage, as well as interactions with cellular components during gene editing.
View Article and Find Full Text PDFSince the initial characterization of Streptococcus pyogenes CRISPR/Cas9 as a powerful gene-editing tool, it has been widely accepted that Cas9 generates blunt-ended DNA products by concerted cleavage of the target (tDNA) and non-target (ntDNA) strands three nucleotides away from the protospacer adjacent motif (PAM) by HNH and RuvC nuclease active sites, respectively. Following initial DNA cleavage, RuvC catalyzes 3'→5' degradation of the ntDNA resulting in DNA products of various lengths. Here, we found that Cas9 selects multiple sites for initial ntDNA cleavage and preferentially generates staggered-ended DNA products containing single-nucleotide 5'-overhangs.
View Article and Find Full Text PDFThe discovery of prokaryotic adaptive immunity prompted widespread use of the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) endonuclease Cas9 for genetic engineering. However, its kinetic mechanism remains undefined, and details of DNA cleavage are poorly characterized. Here, we establish a kinetic mechanism of Streptococcus pyogenes Cas9 from guide-RNA binding through DNA cleavage and product release.
View Article and Find Full Text PDFSpecialized DNA polymerases, such as DNA polymerase lambda (Polλ), are important players in DNA damage tolerance and repair pathways. Knowing how DNA polymerases are regulated and recruited to sites of DNA damage is imperative to understanding these pathways. Recent work has suggested that Polλ plays a role in several distinct DNA damage tolerance and repair pathways.
View Article and Find Full Text PDF