Publications by authors named "Anthony Simon Lynch"

Article Synopsis
  • * Researchers developed a novel monoclonal antibody (mAb) called "mAbtyrin" that targets multiple bacterial processes, enhancing its effectiveness against S. aureus.
  • * mAbtyrin showed improved protection in preclinical models, including better defense against infections and enhanced effectiveness when used with vancomycin, suggesting it could be a promising treatment for S. aureus-related diseases.
View Article and Find Full Text PDF

TNP-2198, a stable conjugate of a rifamycin pharmacophore and a nitroimidazole pharmacophore, has been designed, synthesized, and evaluated as a novel dual-targeted antibacterial agent for the treatment of microaerophilic and anaerobic bacterial infections. TNP-2198 exhibits greater activity than a 1:1 molar mixture of the parent drugs and exhibits activity against strains resistant to both rifamycins and nitroimidazoles. A crystal structure of TNP-2198 bound to a RNA polymerase transcription initiation complex reveals that the rifamycin portion of TNP-2198 binds to the rifamycin binding site on RNAP and the nitroimidazole portion of TNP-2198 interacts directly with the DNA template-strand in the RNAP active-center cleft, forming a hydrogen bond with a base of the DNA template strand.

View Article and Find Full Text PDF

The introductions of the bicyclic 4-nitroimidazole and the oxazolidinone classes of antimicrobial agents represented the most significant advancements in the infectious disease area during the past two decades. Pretomanid, a bicyclic 4-nitroimidazole, and linezolid, an oxazolidinone, are also part of a combination regimen approved recently by the US Food and Drug Administration for the treatment of pulmonary, extensively drug resistant (XDR), treatment-intolerant or nonresponsive multidrug-resistant (MDR) (TB). To identify new antimicrobial agents with reduced propensity for the development of resistance, a series of dual-acting nitroimidazole-oxazolidinone conjugates were designed, synthesized and evaluated for their antimicrobial activity.

View Article and Find Full Text PDF

The pathogenesis of Staphylococcus aureus is thought to depend on the production of pore-forming leukocidins that kill leukocytes and lyse erythrocytes. Two leukocidins, Leukocidin ED (LukED) and γ-Hemolysin AB (HlgAB), are necessary and sufficient to kill mice upon infection and toxin challenge. We demonstrate that LukED and HlgAB cause vascular congestion and derangements in vascular fluid distribution that rapidly cause death in mice.

View Article and Find Full Text PDF

A key aspect underlying the severity of infections caused by is the abundance of virulence factors that the pathogen uses to thwart critical components of the human immune response. One such mechanism involves the destruction of host immune cells by cytolytic toxins secreted by , including five bicomponent leukocidins: PVL, HlgAB, HlgCB, LukED, and LukAB. Purified leukocidins can lyse immune cells ex vivo, and systemic injections of purified LukED or HlgAB can acutely kill mice.

View Article and Find Full Text PDF

The clinical management of prosthetic joint infections and other persistent bacterial infections represents a major unmet medical need. The rifamycins are one of the most potent antibiotic classes against persistent bacterial infections, but bacteria can develop resistance to rifamycins rapidly and the clinical utility of the rifamycin class is typically limited to antibiotic combinations to minimize the development of resistance. To develop a better therapy against persistent bacterial infections, a series of rifamycin based bifunctional molecules were designed, synthesized, and evaluated with the goal to identify a dual-acting drug that maintains the potent activity of rifamycins against persistent pathogens and at the same time minimize the development of rifamycin resistance.

View Article and Find Full Text PDF