Nucleosides Nucleotides Nucleic Acids
May 2009
(15)N NMR chemical shift changes in the presence of Mg(H(2)O)(6)(2+), Zn(2+), Cd(2+), and Co(NH(3))(6)(3+) were used to probe the effect of flanking bases on metal binding sites in three different RNA motifs. We found that: for GC pairs, the presence of a flanking purine creates a site for the soft metals Zn(2+) and Cd(2+) only; a GG.UU motif selectively binds only Co(NH(3))(6)(3+), while a UG.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
October 2004
We have used the synthesis and 15N NMR study of separate loop A and loop B domains of the hairpin ribozyme to demonstrate that multiple 15N atoms can be incorporated into an RNA strand and be unambiguously distinguished through a combination of direct and indirect tagging by 13C atoms. Absence of 15N chemical shift changes shows that the G8N1 in loop A does not become deprotonated up to pH 8, and that the G21N7 of loop B does not bind to Mg2+.
View Article and Find Full Text PDFAll CG dinucleotides along exons 5-8 of the p53 tumor suppressor gene contain endogenous 5-methylcytosine (MeC). These same sites (e.g.
View Article and Find Full Text PDFGuanosine labeled with 15N at N1, amino, and N7 and 13C at either C2 or C8 was oxidized by Rose Bengal photosensitization (singlet oxygen) in buffered aqueous solution. At pH > 7, spiroiminodihydantoin was the major product, while at pH < 7, guanidinohydantoin (Gh) was the principal product. 15N and 13C NMR studies confirmed that Gh was formed as a mixture of slowly equilibrating diastereomers.
View Article and Find Full Text PDFWe have previously reported the use of a 13C tag at the C2 of 15N-multilabeled purine nucleosides to distinguish the adjacent-labeled 15N atoms from those in an untagged nucleoside. We now introduce the use of an indirect tag at the C8 of 15N7-labeled purine nucleosides. This tag allows unambiguous differentiation between a pair of 15N7-labeled purines in which only one is 13C8 labeled.
View Article and Find Full Text PDFSpectroscopic and calorimetric techniques were employed to characterize and contrast the binding of the aminoglycoside paromomycin to three octamer nucleic acid duplexes of identical sequence but different strand composition (a DNA.RNA hybrid duplex and the corresponding DNA.DNA and RNA.
View Article and Find Full Text PDFThe tobacco specific pulmonary carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is metabolically activated to electrophilic species that form methyl and pyridyloxobutyl adducts with genomic DNA, including O(6)-methylguanine, N7-methylguanine, and O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine. If not repaired, these lesions could lead to mutations and the initiation of cancer. Previous studies used ligation-mediated polymerase chain reaction (LMPCR) in combination with PAGE to examine the distribution of NNK-induced strand breaks and alkali labile lesions (e.
View Article and Find Full Text PDFThe mutagenicity of a prominent tobacco carcinogen, benzo[a]pyrene (B[a]P), is believed to result from chemical reactions between its diol epoxide metabolite, (+)-anti-7r,8t-dihydroxy-c9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), and DNA, producing promutagenic lesions, e.g., (+)-trans-anti-7R,8S,9S-trihydroxy-10S-(N(2)-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (N(2)-BPDE-dG).
View Article and Find Full Text PDFPeroxynitrite is a strong oxidizing agent that is formed in the reaction of nitric oxide and superoxide anion. It is capable of oxidizing and nitrating a variety of biological targets including DNA, and these modifications may be responsible for a number of pathological conditions and diseases. A recent study showed that peroxynitrite reacts with 2',3',5'-tri-O-acetylguanosine to yield a novel compound, tri-O-acetyl-1-(beta-D-erythro-pentafuranosyl)-5-guanidino-4-nitroimidazole, and, unlike other peroxynitrite-mediated guanine oxidation products, it is a stable and significant component formed even at low peroxynitrite concentrations.
View Article and Find Full Text PDF