The energetic and geometric features enabling redox chemistry across the copper cupredoxin fold contain key components of electron transfer chains (ETC), which have been extended here by templating the cross-β bilayer assembly of a synthetic nonapeptide, HHQALVFFA-NH (K16A), with copper ions. Similar to ETC cupredoxin plastocyanin, these assemblies contain copper sites with blue-shifted ( 573 nm) electronic transitions and strongly oxidizing reduction potentials. Electron spin echo envelope modulation and X-ray absorption spectroscopies define square planar Cu(II) sites containing a single His ligand.
View Article and Find Full Text PDFA greater rate of phloem unloading and storage in the stem, not a higher rate of sugar production by photosynthesis or sugar export from leaves, is the main factor that results in sugar accumulation in sweet dwarf sorghum compared to grain sorghum. At maturity, the stem internodes of sweet sorghum varieties accumulate high concentrations of fermentable sugars and represent an efficient feedstock for bioethanol production. Although stem sugar accumulation is a heritable trait, additional factors that drive sugar accumulation in sorghum have not been identified.
View Article and Find Full Text PDFLiving systems contain remarkable functional capability built within sophisticated self-organizing frameworks. Defining the assembly codes that coordinate these systems could greatly extend nanobiotechnology. To that end, we have highlighted the self-assembling architecture of the chlorosome antenna arrays and report the emulation and extension of their features for the development of cell-compatible photoredox materials.
View Article and Find Full Text PDF