Publications by authors named "Anthony Schapira"

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects around 30% of the global population. Studies suggest that MASLD is associated with compromised brain health and cognitive dysfunction, initiating a growing interest in exploring the liver-brain axis mechanistically within MASLD pathophysiology. With the prevalence of MASLD increasing at an alarming rate, leaving a large proportion of people potentially at risk, cognitive dysfunction in MASLD is a health challenge that requires careful consideration and awareness.

View Article and Find Full Text PDF

In this study, heterozygous expression of a common Parkinson-associated GBA1 variant, the L444P mutation, was found to exacerbate α-synuclein aggregation and spreading in a mouse model of Parkinson-like pathology targeting neurons of the medullary vagal system. These neurons were also shown to become more vulnerable to oxidative and nitrative stress after L444P expression. The latter paralleled neuronal formation of reactive oxygen species and led to a pronounced accumulation of nitrated α-synuclein.

View Article and Find Full Text PDF

The Parkinson's Families Project is a UK-wide study aimed at identifying genetic variation associated with familial and early-onset Parkinson's disease (PD). We recruited individuals with a clinical diagnosis of PD and age at motor symptom onset ≤45 years and/or a family history of PD in up to third-degree relatives. Where possible, we also recruited affected and unaffected relatives.

View Article and Find Full Text PDF

Glucocerebrosidase (GBA1) variants constitute numerically the most common known genetic risk factor for Parkinson's disease (PD) and are distributed worldwide. Access to GBA1 genotyping varies across the world and even regionally within countries. Guidelines for GBA1 variant counseling are evolving.

View Article and Find Full Text PDF

The increasing prevalence of Parkinson disease (PD) highlights the need to develop interventions aimed at slowing or halting its progression. As a result of sophisticated disease modeling in preclinical studies, and refinement of specific clinical/genetic/pathological profiles, our understanding of PD pathogenesis has grown over the years, leading to the identification of several targets for disease modification. This has translated to the development of targeted therapies, many of which have entered clinical trials.

View Article and Find Full Text PDF

Background: There is mounting evidence to suggest that high adherence to the Mediterranean diet (MedDiet) may reduce the risk of age-related diseases, including Parkinson's disease (PD). However, evidence for the role of the MedDiet in the relief of motor and non-motor symptoms in patients with PD remains limited and inconclusive. We provide a systematic review of the effects of the MedDiet on the clinical features of PD using data from randomised controlled trials (RCT) and prospective observational studies.

View Article and Find Full Text PDF

The concept of a 'microbiota-gut-brain axis' has recently emerged as an important player in the pathophysiology of Parkinson disease (PD), not least because of the reciprocal interaction between gut bacteria and medications. The gut microbiota can influence levodopa kinetics, and conversely, drugs administered for PD can influence gut microbiota composition. Through a two-step enzymatic pathway, gut microbes can decarboxylate levodopa to dopamine in the small intestine and then dehydroxylate it to m-tyramine, thus reducing availability.

View Article and Find Full Text PDF

Pathogenic variants in PRKN cause early-onset Parkinson's disease (PD), while the role of alpha-synuclein in PRKN-PD remains uncertain. One study performed a blood-based alpha-synuclein seed amplification assay (SAA) in PRKN-PD, not detecting seed amplification in 17 PRKN-PD patients. By applying a methodologically different SAA focusing on neuron-derived extracellular vesicles, we demonstrated alpha-synuclein seed amplification in 8 of 13 PRKN-PD patients, challenging the view of PRKN-PD as a non-synucleinopathy.

View Article and Find Full Text PDF

Caudo-rostral migration of pathological forms of α-synuclein from the gut to the brain is proposed as an early feature in Parkinson's disease pathogenesis, but the underlying mechanisms remain unknown. Intestinal epithelial enteroendocrine cells sense and respond to numerous luminal signals, including bacterial factors, and transmit this information to the brain via the enteric nervous system and vagus nerve. There is evidence that gut bacteria composition and their metabolites change in Parkinson's disease patients, and these alterations can trigger α-synuclein pathology in animal models of the disorder.

View Article and Find Full Text PDF
Article Synopsis
  • GBA1 gene variants are linked to Gaucher disease and increase the risk for Parkinson's disease, but not all carriers develop PD, making it important to identify higher-risk individuals.
  • The study compared motor and non-motor symptoms in GBA1 variant carriers and non-carriers using standardized assessments and included data from additional cohorts.
  • Results showed GBA1-positive Parkinson's patients had worse cognitive and olfactory performance, while no significant differences were found between non-affected GBA1 carriers and controls, pointing to a distinct phenotype in GBA1-positive PD without confirming earlier reports of prodromal PD signs in carriers.
View Article and Find Full Text PDF

Recent attention has highlighted the importance of oral microbiota in human health and disease, e.g., in Parkinson's disease, notably using shotgun metagenomics.

View Article and Find Full Text PDF

Compound 5 was identified from a high-throughput screening campaign as a small molecule pharmacological chaperone of glucocerebrocidase (GCase), a lysosomal hydrolase encoded by the GBA1 gene, variants of which are associated with Gaucher disease and Parkinson's disease. Further investigations revealed that compound 5 was slowly transformed into a regio-isomeric compound (6) in PBS buffer, plausibly via a ring-opening at hemiaminal moiety accompanied by subsequent intramolecular CC bond formation. Utilising this unexpected skeletal rearrangement reaction, a series of compound 6 analogues was synthesized which yielded multiple potent GCase pharmacological chaperones with sub-micromolar EC values as exemplified by compound 38 (EC = 0.

View Article and Find Full Text PDF

Background And Objectives: Cadaveric studies have shown disease-related neurodegeneration and other morphological abnormalities in the retina of individuals with Parkinson disease (PD); however, it remains unclear whether this can be reliably detected with in vivo imaging. We investigated inner retinal anatomy, measured using optical coherence tomography (OCT), in prevalent PD and subsequently assessed the association of these markers with the development of PD using a prospective research cohort.

Methods: This cross-sectional analysis used data from 2 studies.

View Article and Find Full Text PDF

Background: Variants in the GBA1 gene, which encodes lysosomal acid glucocerebrosidase, are among the most common genetic risk factors for Parkinson's disease and are associated with faster disease progression. The mechanisms involved are unresolved but might include accumulation of glucosylceramide. Venglustat is a brain-penetrant glucosylceramide synthase inhibitor that, in previous studies, reduced amounts of the glycosphingolipid.

View Article and Find Full Text PDF

The GBA1 gene encodes the lysosomal enzyme glucocerebrosidase (GCase), which is involved in sphingolipid metabolism. Biallelic variants in GBA1 cause Gaucher disease (GD), a lysosomal storage disorder characterised by loss of GCase activity and aberrant intracellular accumulation of GCase substrates. Carriers of GBA1 variants have an increased risk of developing Parkinson disease (PD), with odds ratio ranging from 2.

View Article and Find Full Text PDF

Mutations in GBA1, the gene encoding the lysosomal enzyme β-glucocerebrosidase (GCase), which cause Gaucher's disease, are the most frequent genetic risk factor for Parkinson's disease (PD). Here, we employ global proteomic and single-cell genomic approaches in stable cell lines as well as induced pluripotent stem cell (iPSC)-derived neurons and midbrain organoids to dissect the mechanisms underlying GCase-related neurodegeneration. We demonstrate that GCase can be imported from the cytosol into the mitochondria via recognition of internal mitochondrial targeting sequence-like signals.

View Article and Find Full Text PDF

Heterozygous variants in GBA1, encoding glucocerebrosidase (GCase), are the most common genetic risk factor for Parkinson's disease (PD). Moreover, sporadic PD patients also have a substantial reduction of GCase activity. Genetic variants of SMPD1 are also overrepresented in PD cohorts, whereas a reduction of its encoded enzyme (acid sphingomyelinase or ASM) activity is linked to an earlier age of PD onset.

View Article and Find Full Text PDF

Purpose Of Review: Genetic variants in GBA1 and LRRK2 genes are the commonest genetic risk factor for Parkinson disease (PD); however, the preclinical profile of GBA1 and LRRK2 variant carriers who will develop PD is unclear. This review aims to highlight the more sensitive markers that can stratify PD risk in non-manifesting GBA1 and LRRK2 variant carriers.

Recent Findings: Several case-control and a few longitudinal studies evaluated clinical, biochemical, and neuroimaging markers within cohorts of non-manifesting carriers of GBA1 and LRRK2 variants.

View Article and Find Full Text PDF

Background: Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD.

View Article and Find Full Text PDF

An increase in the efficiency of clinical trial conduct has been successfully demonstrated in the oncology field, by the use of multi-arm, multi-stage trials allowing the evaluation of multiple therapeutic candidates simultaneously, and seamless recruitment to phase 3 for those candidates passing an interim signal of efficacy. Replicating this complex innovative trial design in diseases such as Parkinson's disease is appealing, but in addition to the challenges associated with any trial assessing a single potentially disease modifying intervention in Parkinson's disease, a multi-arm platform trial must also specifically consider the heterogeneous nature of the disease, alongside the desire to potentially test multiple treatments with different mechanisms of action. In a multi-arm trial, there is a need to appropriately stratify treatment arms to ensure each are comparable with a shared placebo/standard of care arm; however, in Parkinson's disease there may be a preference to enrich an arm with a subgroup of patients that may be most likely to respond to a specific treatment approach.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common movement disorder, estimated to affect 4% of individuals by the age of 80. Mutations in the glucocerebrosidase 1 () gene represent the most common genetic risk factor for PD, with at least 7-10% of non-Ashkenazi PD individuals carrying a mutation (PD-). Although similar to idiopathic PD, the clinical presentation of PD- includes a slightly younger age of onset, a higher incidence of neuropsychiatric symptoms, and a tendency to earlier, more prevalent and more significant cognitive impairment.

View Article and Find Full Text PDF

Microglia are heterogenous cells characterized by distinct populations each contributing to specific biological processes in the nervous system, including neuroprotection. To elucidate the impact of sex-specific microglia heterogenicity to the susceptibility of neuronal stress, we video-recorded with time-lapse microscopy the changes in shape and motility occurring in primary cells derived from mice of both sexes in response to pro-inflammatory or neurotoxic stimulations. With this morpho-functional analysis, we documented distinct microglia subpopulations eliciting sex-specific responses to stimulation: male microglia tended to have a more pro-inflammatory phenotype, while female microglia showed increased sensitivity to conduritol-B-epoxide (CBE), a small molecule inhibitor of glucocerebrosidase, the enzyme encoded by the GBA1 gene, mutations of which are the major risk factor for Parkinson's Disease (PD).

View Article and Find Full Text PDF

Glucocerebrosidase (GCase) is a lysosomal enzyme encoded by the GBA1 gene, loss of function variants of which cause an autosomal recessive lysosomal storage disorder, Gaucher disease (GD). Heterozygous variants of GBA1 are also known as the strongest common genetic risk factor for Parkinson's disease (PD). Restoration of GCase enzymatic function using a pharmacological chaperone strategy is considered a promising therapeutic approach for PD and GD.

View Article and Find Full Text PDF

This review will focus on how bile acids are being used in clinical trials to treat neurological diseases due to their central involvement with the gut-liver-brain axis and their physiological and pathophysiological roles in both normal brain function and multiple neurological diseases. The synthesis of primary and secondary bile acids species and how the regulation of the bile acid pool may differ between the gut and brain is discussed. The expression of several bile acid receptors in brain and their currently known functions along with the tools available to manipulate them pharmacologically are examined, together with discussion of the interaction of bile acids with the gut microbiome and their lesser-known effects upon brain glucose and lipid metabolism.

View Article and Find Full Text PDF