Blue-light excitation of cryptochromes and homologues uniformly triggers electron transfer (ET) from the protein surface to the flavin adenine dinucleotide (FAD) cofactor. A cascade of three conserved tryptophan residues has been considered to be critically involved in this photoreaction. If the FAD is initially in its fully oxidized (diamagnetic) redox state, light-induced ET via the tryptophan triad generates a series of short-lived spin-correlated radical pairs comprising an FAD radical and a tryptophan radical.
View Article and Find Full Text PDFTime-resolved electron paramagnetic resonance was used to monitor the photochemistry of radical pairs from melanin in porcine retinal pigment epithelial cells on the sub-microsecond time scale. Two distinct signals were found: one of enhanced absorption/emission at early times and one mostly emissive at later times. The emissive character of the longer lived feature suggests participation of an excited triplet precursor, something not generally thought to exist in melanins.
View Article and Find Full Text PDFPhotochem Photobiol
September 2008
Melanin, a major pigment found in retinal pigment epithelium (RPE) cells, is considered to function in dual roles, one protective and one destructive. By quenching free radical species and reactive oxygen species (ROS) melanin counteracts harmful redox stress. However, melanin is also thought to be capable of creating ROS.
View Article and Find Full Text PDF